BTR: Binary Token Representations for Efficient Retrieval Augmented Language Models **ICLR** 2024 (spotlight) ÚWNI P

We create BTR: cacheable and calibrated binary token presentations that improve inference speed by >4x and reduce >100x storage for retrieval-augmented language models while maintaining knowledge-intensive NLP task performance.

- Retrieval-augmented models use a retrieve-and-read pipeline. The reader can be either an encoder or an encoder-decoder model.
- BTR creates cacheable binary representations for the passages via decomposition and calibrated binarization to speed up reader inference.
- BTR further reduces storage by offline compression and improves inference speed by runtime compression.

Offline and Runtime Compression

- Offline token compression reduces • *context redundancy* so we do not store token representations every time it appears in a different context.
- Runtime token compression consists of intra-passage and cross-passage compression that remove similar information relevant to the query for different passages.

Major Results for NQ dataset

https://openreview.net/pdf? id=3TO3TtnOFl (Or scan the left QR Code)

Atlas-Q	DeF	ormer		
/IA2-7B		Better	Atlas bas	se
age (GB)				
0				
127				
320				
12804		Dense	Phrase	
10 2 Thro	20 3 Dughput (0 4 (QPS)	0 5	0