
Are Mobile DNN Accelerators Accelerating DNNs?

Qingqing Cao*, Alexandru E. Irimiea‡, Mohamed Abdelfattah⋄,
Aruna Balasubramanian*, Nicholas D. Lane†⋄

qicao@cs.stonybrook.edu,{alexandru.irim,moh.s.abdelfattah}@gmail.com
arunab@cs.stonybrook.edu,ndl32@cam.ac.uk

*Stony Brook University ‡University of Oxford †University of Cambridge ⋄Samsung AI

ABSTRACT
Deep neural networks (DNNs) are running on many mobile and
embedded devices with the goal of energy efficiency and highest
possible performance. However, DNN workloads are getting more
computationally intensive, and simultaneously their deployment is
ever-increasing. This has led to the creation of many purpose-built
low-power neural accelerators to replace or augment traditional
mobile CPUs and GPUs. In this work, we provide an in-depth study
of one set of commercially-available mobile accelerators, the Intel
Neural Compute Sticks (NCS). We perform a systematic measure-
ment study of the latency and energy of this accelerator under a
variety of DNNs including convolutional neural networks (CNNs)
for vision tasks and attention-based Transformer models for NLP
tasks. We compare to the mobile processors (CPU, GPU, and DSP)
on a smartphone and a mobile board. Our study shows commercial
mobile accelerators like NCS are not ready yet to provide the per-
formance as claimed. We also point out directions in optimizing
the model architectures to better suit these accelerators.

ACM Reference Format:
Qingqing Cao*, Alexandru E. Irimiea‡, Mohamed Abdelfattah⋄,, Aruna Bal-
asubramanian*, Nicholas D. Lane†⋄ . 2021. Are Mobile DNN Accelerators
Accelerating DNNs?. In 5th International Workshop on Embedded and Mobile
Deep Learning (EMDL’21), June 25, 2021, Virtual, WI, USA. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3469116.3470011

1 INTRODUCTION
The past four years has seen sizable strides in the inference-time
efficiency of deep learning, and at a cost of few percentage points
in accuracy the execution of the best learning algorithms for vari-
ous tasks (e.g., speech, vision, language) are increasingly becoming
feasible for phone, wearable and embedded platforms [25]. This
capability provides a range of benefits for network edge devices.
Not only are they able to use the state-of-the-art models for pro-
cessing data such as images, audio, and text, instead of weaker,
less complex models – they are also able to do so when network
connectivity is poor or when the cloud is unavailable. On-device

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EMDL’21 , June 25, 2021, Virtual, WI, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8597-8/21/06. . . $15.00
https://doi.org/10.1145/3469116.3470011

processing provides privacy to users where sensitive data such as
spoken words, or image of faces leaves their personal device. Such
benefits have pushed the industry towards adoption of on-device
deep learning. For instance, in Android devices and the iPhone,
on-device deep learning is used to detect if a user is in a car, is
walking or running [2] and is used to detect special keywords (e.g.,
“Hey Siri”) [3]. However, due to limited resources many other types
of deep models, and resulting applications, remain out of reach.

Research advances within efficient inference for deep learning
has moved in two major directions, one software-centric and the
other related to processor hardware. Examples of software-based
innovation include improvements within the learning algorithms
themselves, such as more efficient model architectures, or in soft-
ware system solutions that improve performance through a better
understanding of the workload [12, 14]. On the hardware side, pro-
cessor designs that are purpose-built for the execution of neural
architectures have proliferated [11, 33]. It is common for such ac-
celerators to offer substantial performance gains over mainstream
more general-purpose processors like GPUs, CPUs and DSPs. How-
ever, this is often achieved by making strong assumptions about the
neural architecture composition to be executed; this in turn makes
offering such performance broadly across a variety of architectures
(especially very large and deep models) problematic.

An important question for on-device deep learning will be to
understand the role of purpose-built hardware accelerators. Will
accelerators make all neural network models "cheap" to run? Are
the resource bottlenecks in deep learning inference on mainstream
CPUs disappear tomorrow as accelerators become more common?
Core questions of this type have been inaccessible until only re-
cently due to the lack of off-the-shelf accelerator hardware. In
comparison to the hundreds of proposed accelerator designs and
approaches, there had been almost no open accessible accelerator
processors suitable for comparing again other processor architec-
ture types or mature enough to run a wide range of deep models.
This has now changed with offerings being made from companies
that include Nvidia [41], Huawei [19] and Intel [29].

In this paper, we will begin to address these open questions by
presenting a performance characterization of how DNNs perform
under one of the very few commercially1 available hardware accel-
erators purpose-built to execute deep models efficiently: the Intel
Neural Compute Stick (NCS) Version 1 and Version 2 [29]. The
contributions of this work are as follows:
• DNN performance under commodity accelerators. Detailed
experimental results highlighting the performance of various

1EdgeTPU, for example, can only support limited types of CNNs

https://doi.org/10.1145/3469116.3470011
https://doi.org/10.1145/3469116.3470011

EMDL’21 , June 25, 2021, Virtual, WI, USA Q. Cao et al.

popular DNNs under the NCS versions 1 and 2 (abbreviated NCS1
and NCS2). These results highlight that these mobile accelerators
are evolving and newer version provides lower inference latency
and less energy footprint.

• Comparisons to processor alternatives. As mobile and em-
bedded hardware increasingly offers a variety of processor types,
we compare the performance under deep model workloads of the
NCS1 and NCS2 to the GPU, CPU and DSP from a representative
Qualcomm SoC and Nvidia mobile board. The empirical com-
parisons show that mobile accelerators like NCS devices are not
a competitive as mobile GPUs and DSPs for the studied CNNs.
Moreover, NCS accelerators are not even close to the CPU per-
formance when running NLP models that are becoming more
prevalent in multi-modal vision applications.

• NCS-Aware CNN Optimization. Given that NCS devices are
not ready to accelerate the DNNs, we explore the design space of
DNNmodel architectures and adapt DNNs to bemore accelerator-
friendly. We use one of our observations to optimize a CNN
specifically for NCS2 as a proof-of-concept. We show that by ad-
justing filter depths of InceptionV3, we can achieve a 2× speedup
with ∼1% accuracy loss. We show that optimizing a CNN for a
specific device in that way can lead to large efficiency gains.

2 MOBILE DNN HARDWARE
Mobile CPUs, GPUs and DSPs.Mobile CPUs such as ARM pro-
cessors have single instruction multiple data (SIMD) capabilities to
parallelize compute intensive operations. Most deep learning frame-
works on mobile, such as TensorFlow lite (TFLite) or Qualcomm
Snapdragon Neural Processing Engine (SNPE) use ARM’s SIMD
instruction set called NEON. This allows the explicit use of SIMD
features in ARM’s processors thereby accelerating DNN inference.
However, mobile CPUs have limited parallelization for compute
intensive applications – they are natively designed for more general
tasks and have complex control logic and lower compute density,
which are mainly optimized for serial, control-heavy operations.
GPUs are designed to accelerate graphics applications thus having
stronger SIMD capabilities built for massively parallel workloads.
Deep learning execution frameworks using GPUs typically utilize
many GPU shader cores (usually range from tens to hundreds)
to parallelize the mathematical computations. GPUs are built to
have high compute density and high computations per memory ac-
cess, which are optimized for parallel operations. Mobile DSPs (e.g.
Hexagon DSP) use SIMD extentions, which enhance the original
SIMD by introducing vector execution units. Another feature of
DSPs is that they often support integer based operations (8 or 16-bit)
to further reduce compute clock cycles and energy footprints.
Neural Accelerators: Myriad VPUs. Intel Movidius Neural Com-
pute Stick (NCS) [29] is one of the first commercially available
accelerators for mobile, wearable, and embedded systems. It is pow-
ered by a low-power, high-performance Vision Processing Unit
(VPU) designed to handle a range of applications such as Deep Neu-
ral Network-based classification, object tracking, indoor navigation
and 3D vision applications. At the heart of the NCS is the Myriad-2
VPU. Myriad-2 provides up to 1TOPs of performance at 180 MHz
within a nominal 1W of power consumption. The Myriad-2 con-
tains twelve 128-bit vector processing cores called SHAVE which
compute most of the neural network load [9]. There are 2-MB of

on-chip memory that can be configured to accommodate different
instruction and data mixes depending on the workloadAdditionally,
myriad-2 supports stream processingsimilar to GPUs. NCS2 [22]
has a Myriad-X VPU that runs at 600 MHz (compared to 180 MHz in
Myriad-2) and increases the number of SHAVE cores to 16 (up from
12 in Myriad-2). Additionally, it includes a new "neural compute
engine" dedicated for deep learning workloads specifically. This
suggests that the flexible SHAVE cores were too configurable for
DNN workloads, and instead, a simpler dot product engine was
requisite to accelerate DNN computations with higher efficiency.
3 UNDERSTANDING CNN PERFORMANCE
In this section, we characterize inference latency and energy of the
CNNs on three conventional mobile processors: CPU, GPU, and
DSP as well as two mobile neural accelerators: NCS1 and NCS2.
Our key takeaways are below:
• Takeaway 1: Conventional mobile processors like GPU and DSP
are the winners compared to NCS accelerators in both latency
and energy efficiency.

• Takeaway 2: We study why these CNNs are slower on the NCS
than the GPU and DSP via a roofline analysis. We show that NCS
accelerators are memory-bound due to limited available memory
(e.g. NCS1 has 2MB on-chip memory).

• Takeaway 3: Vectorization and “memory wall" effects have a big
impact on latency for dedicated accelerators like the NCS2 – by
aligning computation size to the device vector size and on-chip
memory, large speedups could be attained.

CNN Workloads. We study four widely used image classification
CNN models: SqueezeNet [20], MobileNetV2 [35], ResNet50 [18],
and InceptionV3 [38]. SqueezeNet and MobileNetV2 are designed
specifically for mobile devices, while ResNet50 and InceptionV3
provides better accuracy and are commonly used as benchmarking
workloads. The accuracy is measured on the image classification
task (ImageNet 2012 [34]). Table 1 summarizes the model com-
plexity and accuracy statistics. The number of million parameters
measures the model size and the number of million FLOPs (floating
point operations) reflects the model computational complexity.

CNN
Model

Million
FLOPs

Million
Params

Top1
Accuracy

SqueezeNet 1683.1 1.25 57.5%
MobileNetV2 608.8 3.51 72.0%
ResNet50 7022.3 25.56 77.2%
InceptionV3 5744.4 25.57 78.8%

Table 1: Model stats for the four studied CNNs.
Measurement Setup and Metrics. We compare the performance
of different processors based on inference latency and energy, two
critical metrics on mobile devices. The inference latency is the time
between feeding the image and finishing the classification. All re-
ported numbers are averaged over 10 runs. We use Monsoon Power
Monitor [37] to measure the power for the OnePlus 3 Android
smartphone [31]. To measure the power of NCS1, we use a on-the-
go cable to connect the NCS1 into the phone. As NCS2 doesn’t
support Android hosts, we measure the current and voltage on a
PC, with a USB 3.0 measurement tool (MakerHawk UM34C [6])
and we scale the voltage and current measurements to make them
comparable to the mobile platform.

Are Mobile DNN Accelerators Accelerating DNNs? EMDL’21 , June 25, 2021, Virtual, WI, USA

We use the NCSDK [30] for the model inference on NCS1 and
the OpenVINO [23] for NCS2. We use TFLite [8] for mobile CPU
inference2 and the SNPE [32] for GPU and DSP inference.
GPU and DSP Accelerate CNNs Way More than the NCS Ac-
celerators. Figure 1a shows the inference latency of running the
CNN models on the NCS1 and NCS2 compared with the smart-
phone CPU, GPU, and DSP. All devices demonstrate speedups over
the CPU baseline for all CNNs. However, to our surprise, the NCS1
armed with the vision-oriented SHAVE cores turns out to be slower
than conventional mobile GPU and DSP. This is likely the reason
that the NCS2 abandoned the SHAVE cores for CNN acceleration,
and instead opted to add a dedicated neural compute engine (NCE)
specifically for DNNs. This is reflected in our latencymeasurements:
NCS2 consistently beats NCS1 as expected, and is often faster than
GPUs as well. DSPs, however, are still the fastest accelerator for
CNNs over all of our workloads.

Fig. 1b shows the network energy consumption of over the five
platforms. Again, the DSP was the clear winner, as it consumes the
minimum energy across all models. The NCS1/2 consume more
energy than the GPU, but much less than the CPU in all cases. This
is surprising because mobile accelerators like NCS1 and NCS2 are
designed to run the CNNs in a more energy-efficient way due to
specialized chip design.

Based on the latency and energy study, the recent general no-
tion [9, 10, 28] that specialized DNN hardware accelerator has short
latency and impressive power efficiency does not hold in our case.
Conventional mobile processors like GPU and DSP have highly op-
timized both hardware and software stacks and are able to achieve
lower latencies than the NCS devices. Though DSP gives impressive
low latency and energy results, it requires quantizing the CNNs
into integer models and often needs additional model re-training
efforts to avoid accuracy loss. Using GPU for inference however
does not require such deployment cost. We suggest that when se-
lecting the execution engine for CNNs on mobile devices, one can
choose between the GPU and DSP if they are available based on
the latency and energy constraints as well as re-training efforts.
Roofline Analysis of CNNs. To further understand why NCS
accelerators are not comparable to the GPU or DSP, we use the
roofline plots [43] to analyze the processors’ performance.

We plot the ratio of FLOPs to number of parameters in Fig. 2
for each CNN as the operational intensity of each model. Roofline
plots provide an easy way to visualize and compare the perfor-
mance of different kinds of processors. On the x-axis, we have
operational intensity, while the y-axis displays peak performance.
Operational intensity equals the number of operations possible per
available byte of data coming from external memory. Peak perfor-
mance is the maximum number of computations possible, given
the execution units available on chip. The roofline plot therefore
relates performance to memory bandwidth as we will see. A typical
roofline consists of two straight lines. The first one has constant
slope (equal to external memory bandwidth) and shows the range
of operational intensities at which the device has compute capacity
to spare, but performance is limited by memory bandwidth. The
second line is horizontal and is equal to the maximum compute ca-
pacity of the chip. Depending on operational intensity, a workload

2inference using TFLite on the CPU is faster than SNPE on the CPU

that intersects the roofline in the first (slanted) portion is hitting
memory bandwidth limitations, and a workload that intersects the
horizontal portion is compute bound.

Fig. 2 shows the roofline plot for all the five devices. Accord-
ing to the horizontal lines, we see the devices ordered in terms
of their raw compute capacity. However, as we can see, the NCS
devices have lower memory bandwidths (smaller slopes on slanted
portion of roofline) compared to devices on the Snapdragon 820
chipset. If we look at the workloads except SqueezeNet, they have
a computational intensity high enough to saturate the compute
on CPU/GPU/DSP, but they cannot saturate the performance on
NCS1/NCS2 because there isn’t enough memory bandwidth to keep
up with the computation capacity. This can be seen on the plot by
identifying whether the DNN vertical line intersects with the hori-
zontal (compute-bound) or slanted (memory-bound) portions of the
roofline. SqueezeNet model is small enough to fit in all processors
and is compute-bound.
Vectorization & On-Chip Memory Effects on NCS2. Since it
is difficult if impossible to change the hardware for better CNN
performance, one can adapt the CNN models to better fit on the
hardware processors. In this section we perform targeted experi-
ments on specific DNN layers to expose different properties of our
studied hardware platforms. Our goal is to study how to systemati-
cally change the network architectures that suit different hardware
processors.

In the first experiment, we vary the filter depths of common 1×1,
3 × 3 and 5 × 5 filters to investigate the impact on latency on the
NCS2 accelerator. Fig 3 shows the result for the NCS2 device. As we
increase the filter depths, we observe abrupt increases in latency at
specific depths. We call these vectorization effects as they are due
to the compute size of the filter exceeding the vector instruction
parallelism in the NCS2, thereby issuing a new (underutilized) vec-
tor instruction to complete the computation. For example, if vector
width is 16 for multiply-accumulate instructions (MACs), and we
have 17 MACs in our filter, then two vector instructions will need
to be issued to compute the 17 MACs – the first will be fully utilized
(16/16 MACs) while the second will be underutilized (1/16 MACs).

As shown in Fig. 3, the abrupt jumps for NCS2 generally occur
after powers of two – this can be seen at depths 64, 128 and 256.
There are also smaller jumps in latency at multiples of powers of
two, for example 5×5 filters exhibit at jump at depth 192 (3×3 filters
also increase in latency, but to a lesser extent). Such vectorization
effects were much less on other devices (hence our focus on NCS2).
This is likely because NCS2 uses a dedicated neural compute engine
with simple flow control and a limited instruction set.

Other devices such as CPU/GPU have much finer-grained paral-
lelism. Even NCS1 uses SHAVE cores for DNN acceleration, which
has a finer-grained and more complex computation paradigm. In
these cases, we expect that if 17 MACs need to be computed, a
CPU (for example) can issue one vector instruction for 16 of the
MACs, and one normal non-vector instruction for the remaining
MAC, thereby displaying a smoother execution profile. However,
the NCS2 is important to study in this detail as it is indicative of
future dedicated accelerators for DNNs. We therefore recommend
the careful design of DNNs to align to take advantage of such
vectorization effects in DNN accelerators.

EMDL’21 , June 25, 2021, Virtual, WI, USA Q. Cao et al.
In

fe
re

nc
e

La
te

nc
y

(m
s)

20

40

60
80

200

400

600

SqueezeNet MobilenetV2 ResNet50 InceptionV3

Phone-CPU Phone-GPU Phone-DSP NCS1 NCS2

(a) Inference latency

In
fe

re
nc

e
E

ne
rg

y
(m

J)

5

10

50

100

500

SqueezeNet MobilenetV2 ResNet50 InceptionV3

Phone-CPU Phone-GPU Phone-DSP NCS1 NCS2

(b) Inference energy
Figure 1: Inference latency and energy for the studied CNNs on the mobile processors and NCS accelerators.

1 4 16 64 256 1024 4096
Operational Intensity [OPs/Byte]

8

32

128

512

2048

Pe
rfo

rm
an

ce
 [G

OP
s/

s]

NCS1

NCS2

GPU

DSP
CPU

SqueezeNet
MobileNetV2
ResNet50
InceptionV3

Figure 2: Roofline plot showing different devices and CNNs

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400

In
fe

re
n

c
e

 L
a

te
n

c
y
 (

m
s
)

Filter Output Depth

1x1
3x3
5x5

Figure 3: Vectorization effects of NCS2

We continue to increase the filter depths in Fig. 6 to study macro-
scaling effects at larger filter sizes. We consistently observe a much
larger jump (which we call the “memory wall") for different fil-
ter window sizes as shown on the plot. This dramatic increase in
latency is likely due to each individual filter exceeding the size
of the filter on-chip memory capacity on the NCS2, causing the
filter reads to occur through external memory (which is often an
order of magnitude slower). Curiously, the memory wall occurs
at smaller filter depths for smaller filter window sizes. For 1 × 1
filters, it occurs at 1053, for 3 × 3 at 1316 and for 5 × 5 at 1755.
This raises the question of whether OpenVINO software limitation
could also be a contributing culprit to these memory walls. Another
possible reason could be that different filter window sizes are laid
out differently in on-chip memory causing larger window sizes to
more efficiently use the on-chip memory resources. In any case, it is
important to identify these memory walls for non-flexible dedicated
DNN accelerators such as the NCE on NCS2 as they can impact
performance by a large margin.

4 MEASUREMENT STUDY OF NLP MODELS
DNNs have brought rapid progress in many vision tasks that not
only use CNNmodels but also neural building blocks widely used to
understand language features. For example, recently multi-modality
tasks such as image captioning [24] and visual question answer-
ing [7] require joint modeling of image and text input data. Recent
state-of-the models [26, 27, 39] all use DNNs that include both the
CNNs and a set of NLP model building blocks called Transform-
ers [42]. In this section, we specifically discuss the NLP part (i.e.
Transformer models) of these DNNs for multi-modal vision task.
NLP Workloads. We study four variants of the pre-trained BERT
models [13, 40]: BERT-tiny, BERT-mini, BERT-small, and BERT-
medium. The accuracy is measured on the dev set of the sentiment

analysis task [36] (SST [34]). Sentiment analysis is a common appli-
cation used in many mobile devices such as Siri, Alexa and Google
Home [1, 4]. Table 2 summarizes themodel complexity and accuracy
statistics. Similarly to the CNNs, the number of million parameters
measures the model size and the number of million FLOPs (floating
point operations) reflects the model computational complexity.

BERT
Model

Million
FLOPs

Million
Params

SST
Accuracy

BERT-tiny 4.4 311.1 80.4%
BERT-mini 11.3 2450.0 84.6%
BERT-small 29.1 9730.8 88.1%
BERT-medium 41.7 19459.3 90.5%

Table 2: FLOPs and accuracy stats of the four BERT models.
Measurement Setup and Metrics. Since the mobile phone does
not easily support running the BERTmodels on the GPU.We instead
use the Jetson TX2 mobile board [41] which has an ARM CPU and
CUDAGPU.We compare the performance of the TX2 CPU and GPU
with the NCS2 accelerator based on inference latency and energy.
The inference latency is the time between feeding the input text
(128 tokens) and finishing the classification. All reported numbers
are averaged over 10 runs. We use the internal hardware-based
power monitor available on the TX2 board to measure the energy.
We use the NCSDK [30] for the model inference on NCS1, the
OpenVINO [23] for NCS2, and TensorFlow [15] for inference on the
TX2 CPU and GPU.
The NCS Accelerators Are Not Ready for Accelerating Trans-
former NLP Models. Figure 4a shows the inference latency of
running four BERT models on the NCS1 and NCS2 compared with
the smartphone CPU, GPU, and DSP. Suprisingly, both the NCS1
and NCS2 are 5 ∼ 10x slower than the CPU and are 20 ∼ 60 slower
than the GPU. Fig. 4b shows the model energy consumption of
over the five platforms. Again, although the gap is smaller than the

Are Mobile DNN Accelerators Accelerating DNNs? EMDL’21 , June 25, 2021, Virtual, WI, USA
In

fe
re

nc
e

La
te

nc
y

(m
s)

50

100

500

1000

BERT-tiny BERT-mini BERT-small BERT-medium

TX2-CPU TX2-GPU NCS1 NCS2

(a) Inference latency

In
fe

re
nc

e
E

ne
rg

y
(m

J)

50

100

500

1000

BERT-tiny BERT-mini BERT-small BERT-medium

TX2-CPU TX2-GPU NCS1 NCS2

(b) Inference energy
Figure 4: Inference latency and energy for the studied BERT models on the TX2 mobile board and NCS2 accelerator.

latency, NCS devices consume (3 ∼ 12)x more energy than the CPU
and GPU. We hypothesize this is likely because neural accelerators
designed for vision tasks are optimized for CNNs not for other
types of model architectures.
Roofline Analysis of BERT Models. As described earlier, in the
roofline model, the DNN vertical line intersects with the horizontal
(compute-bound) or slanted (memory-bound) portions. Figure 5
shows all BERT models are compute-bound on the CPU and GPU
and are memory-bound on the NCS2. On the NCS1, smaller mod-
els like BERT-tiny and BERT-mini are memory-bound but larger
models like BERT-small and BERT-medium are compute-bound.
5 OPTIMIZING CNNS FOR NCS: A CASE STUDY
As is hard to change the underlying hardware to optimize CNN
inference, we could change the CNN model design that best use
the hardware processor features.

Specifically, we leveraged the vectorization effects to prune the
InceptionV3 CNN for the NCS2 accelerator. In this proof-of-concept
optimization attempt, we kept the experiment simple. To recoup
most of the gains from vectorization, we decreased the output filter
depths in InceptionV3 to the closest power of two – this decreased
its number of parameters to from 25M to 12M parameters. We then
retrained the CNN using stochastic gradient descent (SGD) with
momentum 0.9, weight decay 10−4 and learning rate 0.1 (which
was divided by 10 every 30 epochs). Even though we decreased
the number of parameters by more than half, the accuracy only
dropped by 1.2%. For NCS2, this device-aware pruning resulted in
a drop of latency from 37 ms to 20 ms, and power dropped slightly
by 7%. Overall, this improved perf/watt by ∼ 2×.

Latency Power Perf/Watt

Original NCS2 37 ms 633 mW 43 fps/W
DSP 36 ms 587 mW 47 fps/W

Pruned NCS2 20 ms 592 mW 84 fps/W
DSP 23 ms 478 mW 91 fps/W

Table 3: Latency, power and efficiency of InceptionV3 be-
fore/after NCS-aware pruning on NCS2 and DSP.

When we ran the same pruned CNN on the DSP, the gains were
not as dramatic because this pruningwas done specifically for NCS2.
As Table 3 shows, NCS2 becomes 15% faster than DSP after pruning,
even if it was 3% before pruning. However, the DSP still wins in
overall efficiency. We used just one of our layer-wise investigation
takeaways, and a significant speedup could already be observed for
the NCS2 accelerator. This confirms that device-specific tuning of

CNNs is requisite to be able to make the most out of dedicated CNN
accelerators like the NCS2. However, well-known DNNs are typi-
cally design with commodity processors in mind which overlooks
the specific properties of fixed-function accelerators. We anticipate
that in the future more device-specific DNN design will occur as
these new DNN accelerators become more mainstream.
6 RELATEDWORK
Processor Hardware and System Optimization. As the com-
pute cost of machine learning models continues to grow, and their
adaptation increases, more optimizations are required to deploy
them in practice. There is also an increase desire for ASIC accel-
erators specifically designed for NN workloads. Many of these
optimizations are achieved using custom hardware acceleration
blocks [10, 16]. Most of these solutions are designed to speed up
inferences, while others aim to accelerate the training phase. Given
popularity of DNNs it’s not surprising that there has been a spate
of publications, prototypes, and commercial hardware accelera-
tions. While less flexible than other platform they can offer better
energy-efficiency and smaller silicon area footprint.
DNN Benchmarks. AI benchmarks [21] studies eight computer
vision workloads for various mobile SoCs. [17] characterizes the
CNN latency and throughput for mobile vision tasks. Both of them
don’t study the CNN performance for commodity hardware accel-
erators. [5] discusses various deep learning workloads for training
and inference on server-level processors.
7 CONCLUSION
Motivated by the looming arrival of neural network accelerators in
embedded and mobile devices, we have conducted systematic mea-
surement studies that considers a type of commercially available
neural network accelerator: the Intel Neural Compute Stick. We
compared the latency and energy performance of CNNs and NLP
models to conventional mobile processors like CPUs, GPUs and
DSPs. We find that without dedicated software stack optimization,
mobile accelerators like NCS are not ready yet to replace GPUs and
DSPs. Our findings shed light on architectural properties of fixed
function accelerators such as the NCS1/2, and our takeaways and
initial accelerator-aware optimizations for CNNs can be further ex-
ploited to attain an improvement in efficiency for emerging mobile
DNN accelerators.

REFERENCES
[1] 2013. Sentiment analysis and artificial intelligence: Siri, should I open this

email? https://venturebeat.com/2013/04/01/sentiment-analysis-and-artificial-

https://venturebeat.com/2013/04/01/sentiment-analysis-and-artificial-intelligence-siri-should-i-open-this-email/
https://venturebeat.com/2013/04/01/sentiment-analysis-and-artificial-intelligence-siri-should-i-open-this-email/

EMDL’21 , June 25, 2021, Virtual, WI, USA Q. Cao et al.

1 4 16 64 256 1024 4096
Operational Intensity [OPs/Byte]

8

32

128

512

2048
Pe

rfo
rm

an
ce

 [G
OP

s/
s]

NCS1

NCS2

GPU

DSP
CPU

BERT-tiny
BERT-mini
BERT-small
BERT-medium

Figure 5: Roofline plot showing different devices and BERT

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 256 512 768 1024 1280 1536 1792 2048

In
fe

re
n

c
e

 L
a

te
n

c
y
 (

m
s
)

Filter Output Depth

1x1
3x3
5x5

Figure 6: Memory effects of NCS2

intelligence-siri-should-i-open-this-email/
[2] 2018. Google APIs for Android. https://developers.google.com/android/reference/

com/google/android/gms/location/DetectedActivity.
[3] 2018. Hey Siri: An On-device DNN-powered Voice Trigger for Apple’s Personal

Assistant. https://machinelearning.apple.com/2017/10/01/hey-siri.html.
[4] 2019. Beyond Siri, Google Assistant, and Alexa – what you need to know about AI

Conversational Applications. https://www.kdnuggets.com/beyond-siri-google-
assistant-and-alexa-what-you-need-to-know-about-ai-conversational-
applications.html/

[5] R. Adolf, S. Rama, B. Reagen, G. Wei, and D. Brooks. 2016. Fathom: reference
workloads for modern deep learning methods. In 2016 IEEE International Sym-
posium on Workload Characterization (IISWC). IEEE, New York, NY, USA, 1–10.
https://doi.org/10.1109/IISWC.2016.7581275

[6] Amazon. 2019. MakerHawk UM34C. https://www.amazon.com/MakerHawk-
Bluetooth-Voltmeter-Multimeter-Resistance/dp/B07DK4GDSP. accessed 22-
October-2019.

[7] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C Lawrence Zitnick, and Devi Parikh. 2015. Vqa: Visual question answering. In
Proc. of the IEEE international conf. on computer vision. 2425–2433.

[8] TensorFlow Authors. 2018. TensorFlow Lite. https://www.tensorflow.org/. ac-
cessed 8-April-2017.

[9] B. Barry, C. Brick, F. Connor, D. Donohoe, D.Moloney, R. Richmond,M. O’Riordan,
and V. Toma. 2015. Always-on Vision Processing Unit for Mobile Applications.
IEEE Micro 35, 2 (Mar 2015), 56–66.

[10] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architec-
ture for energy-efficient dataflow for convolutional neural networks. In ACM
SIGARCH Computer Architecture News, Vol. 44. IEEE, New York, NY, USA, 367–
379.

[11] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2017. Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE Journal of Solid-State Circuits 52, 1 (2017), 127–138.

[12] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1. arXiv:1602.02830 (2016).

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proc of the 2019 Conf. of the NAACL-HLT. Association for Computational
Linguistics, Minneapolis, Minnesota, 4171–4186. https://doi.org/10.18653/v1/
N19-1423

[14] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. 2014. Compressing
deep convolutional networks using vector quantization. arXiv:1412.6115 (2014).

[15] Google. 2018. TensorFlow. https://www.tensorflow.org/. accessed 8-May-2018.
[16] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,

and William J Dally. 2016. EIE: efficient inference engine on compressed deep
neural network. In Computer Architecture (ISCA), 2016 ACM/IEEE. IEEE, 243–254.

[17] Jussi Hanhirova, Teemu Kämäräinen, Sipi Seppälä, Matti Siekkinen, Vesa
Hirvisalo, and Antti Ylä-Jääski. 2018. Latency and Throughput Characterization
of Convolutional Neural Networks for Mobile Computer Vision. In Proc. of the
9th ACMMultimedia Systems Conf. (Amsterdam, Netherlands) (MMSys ’18). ACM,
New York, NY, USA, 204–215. https://doi.org/10.1145/3204949.3204975

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proc. of the IEEE conf. on computer vision and
pattern recognition. 770–778.

[19] Huawei. 2018. Kirin 970. http://www.hisilicon.com/en/Media-Center/News/Key-
Information-About-the-Huawei-Kirin970.

[20] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and< 0.5 mb model size. arXiv:1602.07360 (2016).

[21] A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, T. Hartley, and L. Van Gool.
2018. AI Benchmark: Running Deep Neural Networks on Android Smartphones.
ArXiv e-prints (Oct. 2018). arXiv:1810.01109 [cs.AI]

[22] Intel. 2019. Intel Neural Compute Stick 2. https://software.intel.com/en-us/neural-
compute-stick. accessed 22-October-2019.

[23] Intel. 2019. OpenVINO Toolkit. https://software.intel.com/en-us/openvino-
toolkit. accessed 21-October-2019.

[24] Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-semantic alignments for
generating image descriptions. In Proc. of the IEEE conf. on computer vision and
pattern recognition. 3128–3137.

[25] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and
F. Kawsar. 2016. DeepX: A Software Accelerator for Low-Power Deep Learn-
ing Inference on Mobile Devices. In 2016 15th ACM/IEEE International Conf. on
Information Processing in Sensor Networks (IPSN). 1–12.

[26] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. 2019. ViLBERT: Pretraining
Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks.
In Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
13–23.

[27] Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi Parikh, and Stefan Lee. 2020.
12-in-1: Multi-Task Vision and Language Representation Learning. 10437–10446.

[28] David Moloney, Brendan Barry, Richard Richmond, Fergal Connor, Cormac Brick,
and David Donohoe. 2014. Myriad 2: Eye of the computational vision storm. In
Hot Chips 26 Symposium (HCS), 2014 IEEE. IEEE, 1–18.

[29] Movidius. 2018. Movidius Neural Compute Stick. https://developer.movidius.
com/. accessed 23-March-2018.

[30] Movidius. 2018. SDK for the Neural Compute Stick. https://github.com/movidius/
ncsdk. accessed 21-April-2018.

[31] OnePlus. 2018. OnePlus 3. https://www.oneplus.com/3.
[32] Qualcomm. 2018. Snapdragon Neural Processing Engine. https://developer.

qualcomm.com/software/snapdragon-neural-processing-engine. accessed 13-
May-2018.

[33] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee,
Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, and David Brooks.
2016. Minerva: Enabling low-power, highly-accurate deep neural network ac-
celerators. In ACM SIGARCH Computer Architecture News, Vol. 44. IEEE Press,
267–278.

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252. https:
//doi.org/10.1007/s11263-015-0816-y

[35] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 4510–4520.

[36] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proc. of the 2013 conf. on empirical
methods in natural language processing. 1631–1642.

[37] Monsoon Solutions. 2018. Monsoon Power Monitor. https://www.msoon.com/
LabEquipment/PowerMonitor/.

[38] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In Proc.
of the IEEE conf. on computer vision and pattern recognition. 2818–2826.

[39] Hao Tan and Mohit Bansal. 2019. LXMERT: Learning Cross-Modality Encoder
Representations from Transformers. In Proc. of the 2019 (EMNLP-IJCNLP). As-
sociation for Computational Linguistics, Hong Kong, China, 5100–5111. https:
//doi.org/10.18653/v1/D19-1514

[40] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Well-
read students learn better: On the importance of pre-training compact models.
arXiv:1908.08962 (2019).

[41] Nvidia TX2. 2018. Nvidia TX2. https://devblogs.nvidia.com/jetson-tx2-delivers-
twice-intelligence-edge/.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[43] Samuel Williams, Andrew Waterman, , and David Patterson. 2009. Roofline: An
Insightful Visual Performance Model for Floating-Point Programs and Multicore
Architectures. Commun. ACM (2009).

https://venturebeat.com/2013/04/01/sentiment-analysis-and-artificial-intelligence-siri-should-i-open-this-email/
https://developers.google.com/android/reference/com/google/android/gms/location/DetectedActivity
https://developers.google.com/android/reference/com/google/android/gms/location/DetectedActivity
https://machinelearning.apple.com/2017/10/01/hey-siri.html
https://www.kdnuggets.com/beyond-siri-google-assistant-and-alexa-what-you-need-to-know-about-ai-conversational-applications.html/
https://www.kdnuggets.com/beyond-siri-google-assistant-and-alexa-what-you-need-to-know-about-ai-conversational-applications.html/
https://www.kdnuggets.com/beyond-siri-google-assistant-and-alexa-what-you-need-to-know-about-ai-conversational-applications.html/
https://doi.org/10.1109/IISWC.2016.7581275
https://www.amazon.com/MakerHawk-Bluetooth-Voltmeter-Multimeter-Resistance/dp/B07DK4GDSP
https://www.amazon.com/MakerHawk-Bluetooth-Voltmeter-Multimeter-Resistance/dp/B07DK4GDSP
https://www.tensorflow.org/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.tensorflow.org/
https://doi.org/10.1145/3204949.3204975
http://www.hisilicon.com/en/Media-Center/News/Key-Information-About-the-Huawei-Kirin970
http://www.hisilicon.com/en/Media-Center/News/Key-Information-About-the-Huawei-Kirin970
https://arxiv.org/abs/1810.01109
https://software.intel.com/en-us/neural-compute-stick
https://software.intel.com/en-us/neural-compute-stick
https://software.intel.com/en-us/openvino-toolkit
https://software.intel.com/en-us/openvino-toolkit
https://developer.movidius.com/
https://developer.movidius.com/
https://github.com/movidius/ncsdk
https://github.com/movidius/ncsdk
https://www.oneplus.com/3
https://developer.qualcomm.com/software/snapdragon-neural-processing-engine
https://developer.qualcomm.com/software/snapdragon-neural-processing-engine
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://www.msoon.com/LabEquipment/PowerMonitor/
https://www.msoon.com/LabEquipment/PowerMonitor/
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/

	Abstract
	1 Introduction
	2 Mobile DNN Hardware
	3 Understanding CNN Performance
	4 Measurement Study of NLP Models
	5 Optimizing CNNs for NCS: a Case Study
	6 Related Work
	7 Conclusion
	References

