
UIWear: Easily Adapting User Interfaces for Wearable Devices
Jian Xu∗

Stony Brook University
jianxu1@cs.stonybrook.edu

Qingqing Cao∗
Stony Brook University
qicao@cs.stonybrook.edu

Aditya Prakash
Stony Brook University

adiprakash@cs.stonybrook.edu

Aruna Balasubramanian
Stony Brook University

arunab@cs.stonybrook.edu

Donald E. Porter
The University of North Carolina at

Chapel Hill
porter@cs.unc.edu

ABSTRACT
Wearable devices such as smartwatches offer exciting new oppor-
tunities for users to interact with their applications. However, the
current wearable programming model requires the developer to
write a custom companion app for each wearable form factor; the
companion app extends the smartphone display onto the wear-
able, relays user interactions from the wearable to the phone, and
updates the wearable display as needed. The development effort
required to write a companion app is significant and will not scale
to an increasing diversity of form factors. This paper argues for a
different programming model for wearable devices. The developer
writes an application for the smartphone, but only specifies a UI de-
sign for the wearable. Our UIWear system abstracts a logical model
of the smartphone GUI, re-tailors the GUI for the wearable device
based on the specified UI design, and compiles it into a companion
app that we call the UICompanion app. We implemented UIWear
on Android smartphones, AndroidWear smartwatches, and Sony
SmartEyeGlasses. We evaluate 20 developer-written companion
apps from the AndroidWear category on Google Play against the
UIWear-created UICompanion apps. The lines-of-code required for
the developer to specify the UI design in UIWear is an order-of-
magnitude smaller compared to the companion app lines-of-code.
Further, inmost cases, the UICompanion app performed comparably
or better than the corresponding companion app both in terms of
qualitative metrics, including latency and energy, and quantitative
metrics, including look-and-feel.

1 INTRODUCTION
After decades of largely homogeneous personal computing devices,
the range of device form factors and user interfaces has widened
dramatically. Wearable devices, such as smartwatches and smart-
glasses, provide user interfaces that decouple the benefits of com-
puter assistance from constantly holding a phone or sitting at a

∗Primary authors with equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiCom ’17, October 16–20, 2017, Snowbird, UT, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4916-1/17/10. . . $15.00
https://doi.org/10.1145/3117811.3117819

computer. For example, a GPS heads-up display helps skiers navi-
gate a difficult slope [11]. The Spotify smartwatch app [20] allows
the user to control the music easily, freeing the user’s hands from
constantly holding the phone.

A key bottleneck in leveraging these wearable form factors is
the developer effort involved in adapting an application to a wear-
able device. The dominant model for wearable apps is a companion
app, that essentially mirrors the smartphone application onto the
wearable form factor. The companion app maps a subset of the
smartphone app’s graphical user interface (GUI), and re-tailors the
GUI to suit the wearable device. For example, a button on a smart-
phone might be enlarged and placed on a card [7] surface on the
smartwatch so that the user can tap anywhere on the watch surface
to toggle the button. Our study of the top 100 smartwatch applica-
tions in the AndroidWear category [23] on Google Play shows that,
for 78% of the apps, the watch app simply mirrors the phone (§2).

For each application and form factor, developers need to write
a unique companion app—each requiring thousands of lines of
code (§8). As a result, only a small fraction of smartphone apps
have companion apps. Moreover, without source code, third-party
developers cannot design new companion apps for an existing
smartphone app.

In this work, we present a different programming model for
wearable devices, where the developer writes the smartphone ap-
plication once, and writes a simple meta program to specify how
the application should be extended to a given form factor. Our sys-
tem, UIWear, automatically creates companion apps, that we call
UICompanion apps, for different form factors based on the meta
program. The developer effort in writing the meta program is an
order-of-magnitude lower than writing the companion app. UIWear
is transparent to the application, does not require source code or
changes to the original application, can re-tailor the GUI to suit the
wearable interface, and is well-suited for mobile and wearables.

The overarching principle of UIWear is to decouple application
management from application design. The human designer (devel-
oper or end-user) only specifies what parts of the smartphone GUI
are mapped to the wearable and how the GUI is re-tailored, encoded
as a meta program.

UIWear’s UI virtualization architecture manages all other aspects
of extending the app to the wearable device. UIWear abstracts
a logical model of the GUI and uses this abstraction to re-tailor
and render the GUI on the wearable. UIWear also performs all
underlying synchronization at the GUI layer. All user interactions
on the wearable device are captured by the GUI abstraction and
sent to the phone. The UIWear proxy on the phone emulates the

https://doi.org/10.1145/3117811.3117819

user interaction as though it occurred locally, and the resulting
update is mirrored on the wearable device.

One essential contribution of UIWear is identifying the “pinch-
point” to extract a logical model of the GUI. Existing works on cross-
device display, including RDP [59], and others [25, 27, 44, 60, 62],
extract GUI at the hardware frame buffer level. Unfortunately, the
frame buffer already composites the UI elements into a bitmap,
losing any semantic information that is required for re-tailoring.
Instead, UIWear uses the UI tree abstraction, which is commonly
used across operating systems to represent the GUI as individual UI
elements and their relationships [2, 4]. UIWear essentially splices
the UI tree, tailors it according to the meta program, and compiles it
into the UICompanion app. Although prior approaches [12, 30, 38,
55, 67] have shown how to transparently extract the UI tree without
requiring application support, they are only able to extract the UI
tree partially. UIWear augments the underlying UI tree mechanism
to transparently extract the complete tree.

Another key challenge is in synchronizing at the GUI layer.
Smartphones only allow a single active GUI at a given time; in
fact, the graphics stack of background apps is destroyed. The conse-
quence is that the wearable app can only synchronize as long as the
phone app is in the foreground. We observe that, while maintaining
the full graphics stack of each background application is power
consuming, the logical GUI model (in our case the UI tree) can be
kept active even for background apps with minimal effect on power.
In UIWear, we modify the operating system to keep the UI tree
of a background application active. This simple change allows us
to multiplex I/O events to and from background applications with
minimal effect on power.

There has been related work both in the systems and the human-
computer interaction (HCI) communities for designing cross-device
applications. However, related systems either only work in ho-
mogenous environments that do not require UI re-tailoring [24–
26, 44, 59, 60], or support UI retailoring, but only for specific ap-
plications and devices [30, 50, 53, 65, 70]. UIWear combines the
advantages of the two approaches.

UIWear is implemented over Android, AndroidWear (for smart-
watches), and the Sony SmartEyeglass [17]. The meta program is
specified as an XML. We built an easy-to-use overlay visual tool for
the designer to mark parts of the GUI that are mapped to the wear-
able. UIWear then provides XML based templates for the designer
to easily write the GUI layout for the wearable device.

We evaluate 20 developer-written companion apps from the
AndroidWear category on Google Play. In each case, we create a
UICompanion app to mimic the existing companion app function-
ality. The meta program used to create these UICompanion apps
is an order-of-magnitude smaller compared to the AndroidWear
companion app. Our evaluation shows that UICompanion apps
perform similarly or better for most of the 20 apps in terms of up-
date and response latencies, as well as CPU consumption. Further,
UICompanion apps significantly reduce the energy consumption
on the watch, in some cases by more than 5 times, by offloading
most of the tasks to the more powerful phone. Interestingly, despite
offloading the tasks to the phone, UIWear does not increase energy
consumption on the phone when compared to companion apps.

We show that UIWear can also be extended to create companion
apps on smartglasses. On the Sony SmartEyeglass [17], we create

Spotify Smartwatch
Companion App

Spotify Smartphone
App

Figure 1: The Spotify smartphone and the corresponding
smartwatch companion app. A subset of the smartphone
GUI (markedwithin the red box) is re-tailored for the watch.

UICompanion apps for two apps, Spotify and MyShoppingList, with
less than 30 lines of meta program.

Finally, we conduct a small scale user study to show the effective-
ness of UICompanion apps in terms of functionality and look-and-
feel. In our study, 20 subjects evaluated five applications using A/B
testing techniques. The subjects reported that the UICompanion
app was equal or better that the companion version 74% of the
times in terms of functionality and 78% of the times in terms of
look-and-feel. We also asked 10 of the 20 subjects to write a meta
program for two applications. The subjects were able to write the
meta program in under 16 minutes.

2 COMPANION APPLICATIONS
Companion apps are a common programming paradigm used by
wearable operating systems and vendors includingAndroidWear [23],
Apple [5], Tizen [18], Pebble [15], and Google glass. A companion
app is a GUI projection of the original smartphone app, where parts
of the smartphone UI are re-tailored and displayed on the wearable.
In most cases, the companion app does not operate independently
but synchronizes with the smartphone app.

Figure 1 shows the Spotify companion app from the Android-
Wear [23] category on Google Play. The companion app exports a
view of the Spotify smartphone app to the watch. Events, such as
pausing the song, are synchronized with the smartphone.

2.1 AndroidWear Apps
We studied the top 100 applications (as of March 2017) in the An-
droidWear category on Google Play to categorize them in Table 1
on a spectrum from (A) completely independent of any smartphone
interaction, to (D) Apps whose GUI is a subset of the smartphone
GUI, and the wearable device completely mirrors changes on the
phone. Between (A) and (D) are two categories: (B) apps that collect
local data such as sensors, and (C) apps whose GUI is not a perfect
mirror of the phone. Some apps in category (C) allow the two GUIs
to drift out-of-sync in order to save energy. Our work focuses on
the largest category of apps—category (D) at 78%—which mirror a
subset of the GUI. We believe that (C) could likely also be subsumed

by UIWear, and (B) would be possible in future work with some
extensions.

We arrived at this categorization by manual inspection of the 100
applications to determine if they are standalone apps. To determine
if the application uses local data, we look at permissions, since
obtaining local sensor or GPS data requires explicit permission. To
check if the app mirrors the smartphone UI, we perform various
activities on both the phone and the watch and check for UI up-
dates. Some apps also provide settings to allow users to choose
between syncing with the phone or updating locally. Any app with
this setting is marked C . The remaining apps, i.e., where the smart-
phone and the watch UIs mirror each other are marked D.Watch
Faces are excluded in this study since they only change the watch
background.

Category % Apps Examples
A 10% Google Translate, TalkBack
B 6% Fit, WeChat
C 6% Outlook, Google Music
D 78% Spotify, Weather

Table 1: Top 100 smartwatch apps in the AndroidWear cate-
gory on Google Play divided among four subgroups.

Table 1 shows the percentage of apps and examples in each cate-
gory. Over 78% of the applications fall under category D. This large
number is attributable to a number of factors, including the small
energy and CPU budgets on wearable devices, the fact that most
users have a smartphone nearby at all times, and a desire to give
users a consistent experience and data access on both devices. Even
the newer Android 2.0 [3] OS which has about 25 (non watch face)
applications on Google Play, only has 7 standalone apps. Although
our manual categorization may miss some caveats in app function-
ality, the trend is clear. We expect that the companion app pattern
will remain a common design pattern for wearable applications.
Spotify companion app: To analyze the principal implementation
tasks for a companion app in category D, we analyze the Spotify
companion app shown in Figure 1. The Spotify smartwatch app is
about 10,000 lines of code (LoC), excluding libraries and comments.
The app performs the following tasks (with the corresponding lines
of code for each task): (1) creates native widgets to display on the
wearable GUI and updates the GUI (> 4000 LoC) (2) implements
a custom RPC protocol to exchange user input and other applica-
tion data with the smartphone (> 4000 LoC), (3) creates basic data
structures and classes (< 1000 LoC).

The Spotify companion app is a relatively simple adaptation of
the smartphone GUI, yet this app is complicated by entangling
the wearable GUI design problem with network protocol design
to synchronize application state across devices. Our experience is
that the Spotify app is representative of other companion apps. The
current body of companion apps include one-off implementations
of highly-similar management sub-tasks, including positioning GUI
widgets on the remote device, synchronizing GUI state with the
smartphone, and capturing user input. The goal of UIWear is to
decouple GUI design from GUI management.

App Meta	
Program1	

								
								UIWear	
								Compiler	

UI tree

UICompanion App

(a) UIWear Compiler andMeta program: UIWear compiles themeta
program specification to create the UICompanion app.

UIWear	
phone	proxy	

UIWear	wearable	
Proxy	

Smartphone

Wearable Interface 1

 UICompanion App1
App1 App2

UIWear	wearable	
Proxy	

Wearable Interface 2

UICompanion App2

(b) UIWear Runtime: The UICompanion app on the wearable device
synchronizes state with the smartphone app to relay user interac-
tions and get UI updates.

Figure 2: UIWear Architecture

3 UIWEAR ARCHITECTURE
UIWear consists of both compile time and runtime components,
depicted in Figure 2. At compile time, the human designer writes a
meta program and UIWear compiles this into a UICompanion app.
The UICompanion app is similar to a developer-written companion
app, except that the app is automatically generated by UIWear,
based on the design specified by the meta program. At runtime,
UIWear synchronizes the application state between the companion
app and the phone app, so that a user can access, control, and
modify the application from the wearable device.

UIWear meta program: This is the only step of UIWear that
requires a human-in-the-loop. Given an application, a developer
writes a custom translation of the application UI to the wearable
device. The custom translation includes decisions about what parts
of the UI are to appear on the wearable device and how the UI is
re-tailored. The designer writes a separate meta program for each
wearable form factor, such as a smartwatch or a smartglass.

UIWear compiler: The UIWear compiler compiles the meta pro-
gram to the UICompanion app and ships the app to the wearable
device. This compilation step requires that UIWear extracts a logical
model of the application GUI and re-tailors the GUI. UIWear uses
the UI tree as the logical abstraction of the GUI.

A natural point at which to extract the UI tree is at the accessi-
bility and UI automation interface. Current accessibility interfaces

Root

RelativeLayout
ImageButton	{Close}

LinearLayout
TextView:	Playing	from	Playlist

TextView:	Nature	Noise	by	Spotify
ImageButton{Queue}

FrameLayout RecyclerView
ImageView

ImageView(id=cover_art_carousel)
ImageView

FrameLayout

ImageButton	{Add	to	Your	Music}

LinearLayout
TextView:	Forest	Sounds	id=	text_album
TextView:Rest &	Relax	Nature	 Sounds	
Artists	id	=	txt_cell_subtitle_normal

ImageView	{Showcontext menu}

LinearLayout
TextView:	3:49
SeekBar
TextView:	16:38

FrameworkLayout
ImageButton	{Shuffle}
ImageButton	{Previous}
ImageButton {Pause}	id	=	btn_play
ImageButton	{Next}
ImageButton	{Repeat}

Figure 3: The UI tree corresponding to the Spotify phone
GUI shown in Figure 1. The parts marked in black show the
parts of the UI tree that are chosen by the human designer
for display on the wearable device.

are designed only for extracting textual content of the GUI, primar-
ily for applications for the visually impaired that may not require
graphical content. UIWear augments this existing technique so that
the complete UI tree, including text and visual data are extracted.

UIWear runtime: At run time, UIWear synchronizes the UI states
of the wearable app and the corresponding phone app. UIWear’s
synchronization protocol relays input events from the wearable
device to the UIWear phone proxy, which emulates the user input
on the phone. The resulting GUI update is relayed to the wearable
device using the UI tree abstraction. This synchronization requires
no support from the phone application, unlike existing companion
apps that need to write a custom remote procedure call interface.
One constraint is that, in several smartphone OSes, only a single
GUI (of the foreground application) is active at any given time. In
UIWear we show how we can multiplex I/O events to and from
several applications, including those in the background, at little-to-
no marginal cost on the phone.

4 UI TREE EXTRACTION
UIWear uses UI trees to represent the logical model of the GUI.
The UI tree is effectively a high-level, intermediate representation
of the GUI. Both mobile and desktop operating systems use some
variation of a UI tree to represent GUI state before it is rendered on
the display frame buffer [2, 4, 30].

In Android, the key element required to construct the UI tree
is the view node. The view node is an intermediate layer residing
between the application and the graphics stack (other operating
systems have a similar layer). The view node maintains information
about each UI element in the application GUI. The view node then
calls the graphics stack to composite the UI into a bitmap to render
on the screen.

The UI tree is constructed by querying the view node for infor-
mation about each UI element. Figure 3 shows an example UI tree
representation corresponding to the Spotify app shown in Figure 1.
Each vertex in the tree is a UI element such as a button, a scroll
bar, a background image, or a text view. The attributes of these

Figure 4: The left shows the original UI and the right shows
the UI reconstructed with the UI tree extracted using the ac-
cessibility service. Accessibility services are the state-of-the-
art for transparently extracting the UI tree, but only extract
the textual content.

elements include text, image information, location, and available
UI actions, such as whether the element can be clicked.
Limitations of currentUI tree extraction techniques:The state-
of-the-art technique for extracting UI trees transparently, without
application support, is through an accessibility service. The intended
purpose of an accessibility service is to create accessible applications
or assistive software for users with visual or other impairments [21].
These interfaces are more general and powerful than just accessi-
bility, and have been used for software testing, UI automation, and
other purposes [30, 38, 55, 67].

However, current accessibility APIs are insufficient for UIWear,
since they only extract textual information, primarily motivated
for helping users with visual impairments. Figure 4 is the recon-
structed UI using current accessibility APIs, showing that the UI
tree extraction is incomplete. Some tools such as UI Automator
Viewer [67] and HierarchyViewer [12] show the complete UI tree
either by superimposing the UI tree with the bitmap image, or only
allow the UI tree to be accessed from a desktop. Neither of these
approaches are suitable for UIWear.

	
Accessibility	Service	

Foreground app

UI Element
UIWear
Compiler

Existing Accessibility
APIs

Augmented	service	 Request image

On-demand
image request

Return image

UI Element UI Element

Return image Return image

View Node

Figure 5: Augmenting the accessibility service to extract the
application UI tree. The parts marked in orange show UI-
Wear’s augmentation.

UIWear’s Augmented Service: UIWear augments the accessibil-
ity service to extract the complete UI tree. The default accessibility
service works by creating an inter-process communication (IPC)
channel between the accessibility service and the view node, which
stores the UI tree. Figure 5 shows the UIWear augmented accessi-
bility service. UIWear adds a new query/response API, to request

¤

¤

The	designer	clicks	on	the	overlay	to	choose	
the	UI	to	be	mapped	to	the	wearable	device.	
The	designer	also	specifies	any	required	user	
event	transla=on	between	the	wearable	and	
the	phone.	

UIWear	iden=fies	the	UI	element	
corresponding	to	the	clicked	loca=on	and	
creates	the	preference	specifica=on	
programma=cally	

¤

Overlay over the GUI

Figure 6: UIWear creates an overlay over the applicationGUI
so that the designer can choose UI elements to map to the
wearable using simple clicks.

and receive the image information available at the UI element. To
reduce overhead, UIWear requests images on-demand only if the
image is going to be used by the UICompanion app.

Beyond the scope of UIWear, a wider range of needs could be
met with the augmented accessibility service. For instance, users
with lowered vision, but not complete blindness, use screen magni-
fiers, such as MAGic [35] and ZoomText [22], which enlarge a small
portion of the screen in addition to reading GUI contents. These
magnifiers must currently resort to other hacks such as hooking the
VGA pixel buffers, but could instead use the augmented accessibility
service. Similarly, a number of projects have worked on automati-
cally generating text describing images [45, 54]—an enhancement
for blind users—and would benefit from the augmentation.

5 META PROGRAM AND COMPILER
The UIWear compiler creates the UICompanion app by combining
the meta program and the UI tree. The goal of the meta program
specification is to be expressive and yet be simple for a designer
to write. The meta program specification consists of two parts: (i)
the preference specification: containing the subset of UI elements
from the original application GUI to be mapped to the wearable.
UIWear provides an easy-to-use overlay visual tool for the designer
to specify the preference, and (ii) the wearable layout specification:
specifying how the UI elements on the phone are re-tailored for the
wearable UI. We distill a small set of templates to make it simpler
for designers to specify the wearable layout. Both the preference
and the wearable layout specifications are in XML format.

5.1 Preference Specification
The designer creates the preference specification by choosing parts
of the GUI to be mapped to the wearable by simply clicking on the
objects on the phone UI (illustrated in Figure 6). UIWear combines
the location of the click and the UI tree to extract the UI elements
to be mapped.

When required, the designer also specifies a translation between
the user events on the watch and the phone. For instance, a wrist
gesture on the smartwatch is used to scroll the screen, but the
same wrist gesture is not meaningful on the phone and needs
to be converted to a “scroll” event. When the user event on the
wearable input is sent to the phone, the input is translated so that
the corresponding action is performed on the phone. In this paper,

we focus on relatively simple translations, but the framework is
generic enough to add more complex interactions, such as replacing
a textbox with a voice-input class. We are exploring more complex
translations as ongoing work.

5.2 Wearable Layout Specification
The wearable layout is used to specify how the phone UI is re-
tailored to the wearable device.
Examples. We describe three examples of existing smartwatch
companion apps that show the need for re-tailoring the GUI. The
ShoppingList app on the phone uses a ListView to store items in
the shopping list. However, the list is not easy to view on a watch.
Instead, the corresponding companion app uses the card [7] UI
design pattern. This pattern groups related information in a con-
tainer resembling a playing card. Each card contains one shopping
item and the user browses the list by swiping through the cards.
The WaterDrinkReminder app on the smartphone displays the wa-
ter consumption levels in text. The corresponding companion app
transforms text to a progress bar for easy glanceability. Finally, the
Spotify companion app, shown in Figure 1, maps four independent
UI elements on the phone onto the card design pattern. The entire
card is clickable, and the user can click on any part of the card to
play and pause the song.
Wearable layout for Spotify. Figure 7 shows an example wear-
able layout specification for the Spotify app. The four UI elements
from the Spotify phone app (marked in red box in Figure 1) are
identified with IDs: backgroundID, titleID, iconID, and textID. On
the wearable device, the layout specifies how these four UI elements
are laid out using the card design pattern.

Thewearable layout adheres to responsive application design [16],
where the layout adjusts to different screen sizes and screen shapes.
For example, the layout in Figure 7 uses directives such asmatch_parent
andwrap_content to specify a relative layout according to the parent
layout and the screen width respectively. The specification can also
include other directives supported by wearable OSes, for example,
to adapt the layout for a square screen versus a circular screen [7].
Easing designer effort using templates: To ease designer effort
in creating the wearable layout, UIWear provides templates. Most
wearable operating systems provide a set of pre-defined UI patterns
for designing wearable applications [19]. Developers may also cre-
ate custom designs. For the 20 AndroidWear applications that we
consider for evaluation, only one application used a custom de-
sign; the rest used pre-defined templates. For example, the Spotify
AndroidWear app uses a pre-defined card template provided by
AndroidWear. With the UIWear templates, the designer only needs
to fill in the data, such as the ID and position of the UI elements.

By using the template, subjects in our user study without prior
experience in wearable programming were able to write the wear-
able layout specification in under 16 minutes (§8.6).

5.3 UIWear Compiler
The preference file and the wearable layout are combined to create
thewearable UI tree, similar to the UI tree shown in Figure 3. UIWear
creates the UICompanion app using the wearable UI tree. Creating
a UICompanion app involves (1) converting the wearable UI tree

<wearable.view.CardScrollView>
 id="@+id/backgroundID"
 layout_width="match_parent"
 layout_height="wrap_content"
 layout_box="bottom">
 <wearable.view.CardFrame>
 <TextView
 id="@+id/titleID"
 layout_width="match_parent"
 layout_height="wrap_content"/>
 <ImageView
 id="@+id/iconID"
 layout_width="30dp"
 layout_height="30dp”/>
 <TextView
 id="@+id/albumID"
 layout_width="match_parent"
 layout_height="wrap_content" />
 </wearable.view.CardFrame>
</wearable.view.CardScrollView>

Figure 7: The Spotify wearable layout xml that specifies how
the four phone UI elements (marked in the red square in
Figure 1) are laid out on the watch. The UI element IDs are
backgroundID, titleID, iconID, and albumID.

into a GUI of the proper size to display on the wearable device
by detecting the target screen size, and (2) creating appropriate
call backs to capture user interactions. The new companion app is
created completely programmatically and does not require manual
effort.

UIWear first inflates1 the UI tree through the corresponding
XML. For each UI element, UIWear extracts from the UI tree its
image information, textual data, and events associated with it. The
image and text information are used to fill the inflated GUI. For
each event, for example, a click or a long press, UIWear creates a
callback. The callback simply captures the user interaction, possibly
translates the interaction to be meaningful on the phone, and sends
the interaction and the UI element ID to the phone.

6 UIWEAR RUNTIME
In the default, non-UIWear companion app model, the application
synchronizes its own state across devices using a custom protocol
over network sockets. This approach to synchronizing application
state requires developers to write a significant amount of error-
prone code, as well as reason about and prevent potential concur-
rency bugs. Instead, UIWear performs an application-independent
inter-device synchronization at the UI level. UIWear synchroniza-
tion is based around the UI tree abstraction.

UIWear phone proxy: Upon changes to the phone GUI (as
indicated by an accessibility event), the phone proxy parses the
changed UI tree. When applicable, the phone proxy also fetches
embedded images associated with certain UI elements in the tree
using the augmented accessibility service (Figure 5). UIWear checks
if the subset of the UI elements that appear on the wearable device
have changed, by comparing them with a previous cached version.
If no previous version exists or if there are changes, the proxy ships
the diff to the wearable device. UIWear also maintains a small cache
1Inflation is a term used in Android for parsing the XML and turning it into a repre-
sentation that can be rendered.

at the wearable side so that the same image does not have to be
shipped repeatedly.

UIWear wearable proxy: On receiving an update, the wear-
able proxy forwards the update to the corresponding UICompanion
application, which applies this update to its layout and renders
the new UI. If the user interacts with the UICompanion app, the
wearable proxy captures the interaction and serializes the infor-
mation to the phone proxy. Example user events include clicks,
long press, swiping, and gestures such as wrist movements. The
phone proxy then delivers the user event to the application using
the accessibility service, as though the event occurred locally on the
phone. No change to the application is required. In some cases, the
user event needs to be translated from the wearable to the phone,
as specified in the meta program (§5). A few user events, such as
zoom, are performed locally and not delivered to the phone.

If a user interacts with both the phone and watch interfaces
simultaneously and very quickly (or the network is very slow),
it is possible to have conflicting updates. In general, the UIWear
protocol will serialize events in the order they are received by the
application on the phone.We expect that, in the common case, these
events will be serialized and processed faster than most humans
can input them across devices.

Overcoming smartphone I/O restrictions: A current limita-
tion of most smartphone OSes (including Android, on which we
implement UIWear) is that they only allow a single GUI to be active
at a given time. The OS shuts down the graphics stack for an appli-
cation when it is no longer a foreground process. Not maintaining
the graphic stack for background apps is a reasonable optimization
to save power required for rendering and display. However, the
implication of this design is that the GUI synchronization can only
work with a foreground app. In order for background apps to be
able to receive events from a UICompanion app, and respond to
those events, we must keep the UI alive for background apps.

We observe that most of the savings from putting an app in
the background are from not rendering the composite (pixel-level)
display image in the graphics stack. The marginal cost of main-
taining the logical UI structure in the view node is relatively low.
Therefore, UIWear modifies the OS to disable the graphics stack for
background apps, but keeps the view node active. UIWear will only
keep the view node active if the app that moves to the background
was previously interacting with a wearable device; non-UIWear
applications are not affected by this change.

Thus, UIWear can multiplex I/O events to multiple applications,
even if these applications are in the background on the phone.
§7 discusses additional implementation details, and §8 measures
the incremental energy of maintaining the view node for multiple
background apps —showing that the costs are indeed negligible.

7 IMPLEMENTATION
We implement UIWear on the Android ecosystem: Android phone
OS, AndroidWear smartwatch OS, and the Sony SmartEyeglass
that runs over a version of Android [17]. We implemented UIWear
on version 6.0 of Android, although there are no version-specific
dependencies that would prevent porting UIWear to other versions
of Android.

7.1 Compiler Implementation
From the end-user’s perspective, an Android application is made
up of multiple activities or “windows”. For example, viewing the
playlist is one activity, and viewing the playback controls is another
activity. The designer writes a meta program for each application
activity to be mapped to the wearable, and UIWear compiles the
meta programs and bundles them into a single UICompanion app.
In rare cases, an activity may dynamically generate a UI, in which
case we need to write a meta program for the dynamic UI. We did
not encounter this case in our experiments.

UIWear uses the standard Android toolchain to create the UICom-
panion application. The application consists of the source file, the
AndroidManifest file, the layout, and a set of resources that are cre-
ated programmatically. We create templates for the meta program
using FreeMarker [10].

7.2 UIWear Synchronization Implementation
We implement the UIWear phone proxy as a client to the accessi-
bility service on Android, and the wearable proxy as a service on
the wearable device. The phone and wearable proxies together are
implemented in 5,300 lines of code.

For each application, the phone proxy keeps track of preference
files and the wearable UI tree for each activity of the application.
When the user switches between applications or activities on the
wearable device, the phone proxy can identify this switch and
perform the necessary action on the corresponding UI. The UIWear
watch and phone proxy exchange information over the Google
Messaging Service (GMS). GMS encapsulates the data and performs
the low-level communication tasks, and can use Bluetooth or WiFi.

7.3 I/O Multiplexing Implementation
To multiplex I/O between several UICompanion apps and back-
ground apps, UIWear modifies Android to allow the graphics stack
to sleep, but keep the intermediate UI representation (i.e., the view
node state) active.

App (moved to
background)

View node

Graphics stack

Accessibility
Service

Window Manager
Service

UIWear

App status

Stop state
Non-stop

Stop
rendering

Cached UI tree

Figure 8: Implementing I/O multiplexing in UIWear: When
an application moves to the background, as indicated by the
Windowmanager service, UIWear performs a series of steps
to keep the view node and the corresponding accessibility
node active. UIWear changes are shown in red.

Figure 8 shows the UIWear implementation. The Window Man-
ager Service indicates if an application is in the background or

foreground. Typically, when the app moves to the background, it
changes the status of its view node to stop, destroys the UI tree
maintained by the accessibility service, and makes the graphics
stack inactive. Instead, UIWear moves the view node state back
to nonstop and caches the UI tree of the background application.
This simple change makes it possible to multiplex I/O events to
background apps.

The Android OS uses a Low Memory Killer (LMK) mechanism to
kill background applications [1]. There is always a chance that a
background app that is supporting a companion application will
be killed. However, the LMK mechanism prioritizes background
applications that remain inactive for long periods of time. Because
the UIWear background applications send and receive events, they
are not considered inactive, and are thus less likely to be killed.
UIWear applications can also be relaunched by the proxy, if needed.

Our current implementation does not require any OS changes to
AndroidWear and Sony SmartEyeglass. Our implementation does
change the Android OS, but all changes are in the framework layer.
This makes UIWear installation relatively simple as long as the
phone is rooted. Further, we believe that there are good technical
reasons for mobile OSes to incorporate the augmentations described
in UIWear. §4 explains how our augmentations to the accessibility
service would benefit other accessibility technologies. Similarly,
as wearables and other small computing devices become increas-
ingly ubiquitous, the ability to synchronize updates with multiple
(background) apps is fundamentally useful. This functionality has
been proposed independently for integrating with automotive dis-
plays [43].

7.4 Other Use Cases
While the primary purpose of UIWear is to help designers easily
create UICompanion apps, a tech-savvy user can also create their
own UICompanion apps even without application source code. We
create UICompanion apps for Yahoo Mail and Facebook messenger
(both of which do not have companion apps) in under 25 lines of
developer-written XML code. We decompile both the applications
using JADX [8] and extract the layout XML that specifies the UI.
We load the app and use it to specify the preference (Figure 6), and
write a layout XML file to re-tailor the phone GUI to the watch.

The Yahoo mail UICompanion app shows the top few emails on
the watch and allows the users to read their emails from the watch
and the Facebook Messenger UICompanion app allows users to read
their messages on the watch.

7.5 Limitations and Future work
Wearable apps can perform additional tasks, such as collecting
sensor data or running some computation locally; UIWear cannot
currently match this functionality. Further, UICompanion apps
are completely dependent on having network connectivity to a
smartphone, although this problem also extends to most current
companion apps. To address these issues, a future extension to
UIWear would be to push some amount of computation to the
device, such as running small tasks like spell checking or sensor data
collection. Other computations, such as a calculator executing the
computation on the wearable will require more invasive changes.
For this case, we expect that UIWear meta programming model

can be extended to annotate classes that should run remotely. We
believe that the general approach to streamlining GUI adaptation
will still be useful to these applications.

Further, the current implementation only supports touch and
gesture inputs on the wearable, and does not yet support voice. If
these additional user events can be encapsulated as a UI widget
in the graph, such a translation is relatively straightforward. For
instance, one can define an extended text box widget type that
includes a voice-to-text synthesis.

UIWear’s UI extension does not work for applications such as
3D games that are rendered using OpenGL, since they do not create
intermediate UI trees, and instead composite the bitmap directly on
the hardware. It is possible that we can intercept some commands
at the OpenGL level, but transparently adapting the interface to a
large body of graphics-intensive code will be more challenging.

8 EVALUATION
We compare UIWear’s UICompanion apps with existing companion
apps from the Android Wear category on Google Play using both
quantitative measurements (§8.3) and qualitative user studies (§8.6).
The evaluation seeks to answer the following questions:

(1) Does the meta programming framework lower development
effort to create a wearable app? (§8.1)

(2) How does the end-user latency, CPU utilization, energy us-
age, and network costs for a UICompanion app compare
with the companion app version? (§8.3)

(3) Does maintaining the view tree for multiple background
applications affect performance or power? (§8.4)

(4) Can UIWear support heterogeneous form factors? (§8.5)
(5) Do users find the UICompanion app experience comparable

to a companion app?How quickly can a new user proficiently
write a meta program? (§8.6)

8.1 Applications
We experiment with 20 applications listed in Table 2. We chose
companion applications from the top 150 trending apps (as of De-
cember 2016). The apps are chosen randomly from among the apps
that are in category D (§2), and have diverse popularity, measured
in downloads, ranging from 5 thousand to one billion (indicated in
parenthesis in the Table).

For each companion app, we write a meta program to create a
functionally-identical UICompanion app. Each companion app has
between one and nine activities. Our UICompanion apps are written
to implement the same number of activities, writing a meta program
for each activity. Recall that Android applications encompass one or
more activities and the meta program is written at the granularity
of an activity (§7).

We are able to create these meta programs without access to
source code, as described in §7.4. The LoC for the UICompanion
metaprogram shown in Table 2 is for all activities combined, and
includes the wearable layout XML, and any lines specified in the
preference file to translate user events.

We conservatively estimate the lines of code in each companion
app by first decompiling the application using JADX [8].We exclude
libraries and blank spaces, and do not count the lines of supporting
code on the phone.

App (downloads) Companion Meta prog.
LoC* LoC

4Sound (100K) 732 21
Anghami (10M) 2,263 79
BandLab (500M) 1,802 8
Counter (100K) 663 15
Endomondo (10M) 6,522 18
Ghostracer (10K) 5,324 95
HydroCoach (1M) 4,022 12
iHeartRadio (50M) 7,926 96
LensGuage (500K) 3,403 24
myTunerFree (5M) 1,535 56
MDPlayer (10K) 1,894 23
MusicPlayer (10M) 540 12
MyShoppingList (50K) 941 42
Parrot (100K) 3,711 9
PlayMusic (1B) 10,851 103
PodcastRepublic (1M) 808 24
Quitter’sCircle(5K) 2,517 17
Spotify (100M) 10,215 47
WaterDrinkReminder(10M) 1,408 18
WorkoutTrainer (10M) 2,265 36

Table 2: 20 companion applications from the AndroidWear
category on Google Play used in our evaluations and their
downloads in thousands (K), millions (M), and billions (B).
The table shows the Lines of Code (LoC) for the smartwatch
companion app andUICompanionmeta program. *The com-
panion application LoC is a conservative estimate and does
not include the LoC at the phone required to support the com-
panion app.

AUICompanion app requires an order-of-magnitude fewer developer-
written code than a comparable companion apps. A meta program
ranges from 9–103 lines, and the size is proportional to the com-
plexity of the number of elements and activities in the UI. In total,
UIWear represents a significant reduction in effort for wearable
app developers.

8.2 Experimental Setup and Methodology
The experiments are performed on two Nexus 5 phones running
Android version 6.0.1, and two smartwatches: Sony Smartwatch 3
and Huawei smartwatch running AndroidWear 1.5. All experiments
use Bluetooth for communication. In the interest of brevity, we
present data from the Huawei smartwatch; the Sony Smartwatch
results are very similar.

For fine-grained timing measurement of user events, rendering
events, network activities, and CPU measurements, we use recent
augmentations [46] to the systrace [69] tool. When needed, we
synchronize the clocks on the phone and the watch using ntpd [14].
For apps with more than one activity, we evaluate the activity with
the largest number of UI elements. For each activity, we choose all
user events on the watch and the phone that generate a GUI update
and automate the user events using the adb tool. Each set of user
events is repeated 10 times and we report the average and standard
deviation.

 0

 1000

 2000

 3000

 4000

 5000

 6000

4Sound
Angham

i
BandLab
Counter
Endom

ondo
Ghostracer
HydroCoach
iHeartRadio
LensGauge
M

DPlayer
M

usicPlayer
M

yShoppingList
m

yTunerFree
PlayM

usic
PodcastRepublic
Quitter’sCircle
W

aterDrinkRem
inder

W
orkoutTrainer

Parrot
Spotify

Ti
m

e
(m

s)

UICompanion launch time
Companion launch time

Figure 9: Comparing launch times, the
time for the watch GUI to be rendered
when it is first launched. The launch
time is typically longer compared to re-
sponse and update times because all im-
ages need to be loaded on the watch.

 0

 1000

 2000

 3000

 4000

 5000

 6000

4Sound
Angham

i
BandLab
Counter
Endom

ondo
Ghostracer
HydroCoach
iHeartRadio
LensGauge
M

DPlayer
M

usicPlayer
M

yShoppingList
m

yTunerFree
PlayM

usic
PodcastRepublic
Quitter’sCircle
W

aterDrinkRem
inder

W
orkoutTrainer

Parrot
Spotify

Ti
m

e
(m

s)

UICompanion response time
Companion response time

Figure 10: Comparing response times,
the time taken for the watch GUI to up-
date in response to a watch user event.
The response time requires a round trip,
to deliver the user event to the phone
and then update the correspondingGUI.

 0

 1000

 2000

 3000

 4000

 5000

 6000

4Sound
Angham

i
BandLab
Endom

ondo
Ghostracer
HydroCoach
iHeartRadio
LensGauge
M

DPlayer
M

usicPlayer
M

yShoppingList
m

yTunerFree
PlayM

usic
W

aterDrinkRem
inder

W
orkoutTrainer

Parrot
Spotify

Ti
m

e
(m

s)

UICompanion update time
Companion update time

Figure 11: Comparing update times, the
time to update the watch GUI in re-
sponse to an update on the phone. The
update times are shorter compared to
the response times because the phone
only needs to send diffs.

For power measurements on the phone, we use BattOR, a small,
noninvasive hardware device that interposes between a device and
its battery [63]. BattOR collects power measurements on the order
of tens of microseconds and is known for high accuracy. Impor-
tantly, BattOR can measure power for phones without removable
batteries, unlike the more popular Monsoon Power Monitor [13].
We also performed measurements on a Galaxy Nexus phone with
the Monsoon Power Monitor, and our results were similar for both
monitors. The energy consumption is measured over a period of
1 minute with 10 repeated GUI changes and user interactions. On
the smartwatch, we use the dumpsys battery status tool [9]. In
the default case, the phone application is in the foreground. §8.4
measures costs when the phone app is in the background.

8.3 Quantitative Comparisons
Although UIWear is not primarily designed to improve performance
or resource consumption, UIWear apps perform comparably to (and
in some cases even better than) hand-written companion apps.
Latency:

We compare AndroidWear companion and UIWear’s UICompanion
apps, measuring: (1) launch time, (2) update time, and (3) response
time. Launch time is the time from starting an app until all text
and image data are fetched from the phone. After initial launch,
both the companion and UICompanion apps only need to send diffs.
The update time is the time for the GUI update on the phone to be
reflected on the watch. The response time is the time between a
user event at the watch and the corresponding GUI update on the
watch. The response time is typically larger than the update time
because the response time requires a round trip; the user event is
first shipped from the watch to the phone, and the corresponding
GUI update on the phone is mirrored back on the watch.
Launch time: In most cases (16/20), the average launch times of com-
panion and UICompanion apps are similar, shown in Figure 9. For
three applications, HydroCoach, Ghostracer, and PlayMusic, UICom-
panion is 30% slower. We discuss why the HydroCoach and Ghos-
tracer UICompanion apps perform poorly in the next section. With
PlayMusic, our hypothesis is that the application is heavily opti-
mized for the launch time due to high popularity of the app. In

contrast, MyTunerFree and Endomondo companion apps are nearly
50% slower than UIWear. In case of MyTunerFree, the companion
app did not perform well in general.
Response times: For about half of the cases (9/20), UIWear and the
AndroidWear companion apps have comparable response times;
for about a quarter, UIWear has faster responses, and for the other
quarter the hand-written companion app has better response time.
The average response times are shown in Figure 10. In general, the
apps with comparable response times have comparable network
costs (Figure 14).

For five apps, the UIWear response time is much better compared
to the AndroidWear version, with an average reduction of 50%.
Commiserate with the high response times, the companion app
version for these five apps consume more power on the smartwatch
compared to UIWear (Figure 15).

On the other hand, apps that can handle some updates locally
tend to out-perform UIWear. Ghostracer and Counter companion
apps have lower response times since they update the smartwatch
GUI based on local computation (corroborated by network usage
in Figure 14). We will investigate how to push modest computation
to the watch to improve UIWear performance for such cases. The
Hydrocouch application requires a lot of items to be fetched from
the phone: UIWear extracts each item from the UI tree, whereas the
companion app gets the items from the app. This results in higher
response time for the Hydrocouch UICompanion app.
Update times: For 14 of 20 apps, the average update times were sim-
ilar for the companion and UICompanion apps, listed in Figure 11.
Three companion apps, Counter, PodcastRepublic, and QuitterCircle
simply did not update the watch GUI in sync with the phone, so
we were not able to compare them with UIWear. As before, the
myTunerFree companion app is 50% slower than the UIWear version,
and the Ghostracer and Hydrocouch companion apps are faster.

To understand where most of the time is spent, Figure 12 shows
the breakdown of the update times for five UICompanion apps. We
do not have the source code for the companion apps, and there-
fore cannot compute such a break down. The network contributes
50% to 80% of the total time. The next biggest bottleneck is the
UIWear processing on the phone, to parse the UI tree and create
diffs. Rendering contributes little to the overall latency.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

BandLab

LensGauge

M
DPlayer

Spotify

W
aterDrinkRem

inder

Ti
m

e
(m

s)

phone parse time
watch parse time

watch render time
network IO time

Figure 12: Breaking down the response
times latency.

 0

 5

 10

 15

 20

 25

 30

4Sound
Angham

i
BandLab
Counter
Endom

ondo
Ghostracer
HydroCoach
iHeartRadio
LensGauge
M

DPlayer
M

usicPlayer
m

yTunerFree
PlayM

usic
PodcastRepublic
Quitter’sCicle
M

yShoppingList
W

aterDrinkRem
inder

W
orkoutTrainer

Parrot
Spotify

W
at

ch
 C

PU
 U

til
iz

at
io

n
(%

)

UICompanion CPU
Companion CPU

Figure 13: Comparing CPU consump-
tion on the watch.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

4Sound
Angham

i
BandLab
Counter
Endom

ondo
Ghostracer
HydroCoach
iHeartRadio
LensGauge
M

DPlayer
M

usicPlayer
m

yTunerFree
PlayM

usic
PodcastRepublic
Quitter’sCicle
M

yShoppingList
W

aterDrinkRem
inder

W
orkoutTrainer

Parrot
Spotify

Tr
an

sf
er

 S
iz

e
(K

B)

UICompanion
Companion

Figure 14: Comparing network data
transfer from phone to watch.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

4Sound
Angham

i
BandLab
Counter
Endom

ondo
Ghostracer
Hydrocoach
iHeartRadio
LensGauge
M

DPlayer
M

usicPlayer
m

yTunerFree
PlayM

usic
PodcastRepublic
M

yShoppingList
W

aterDrinkRem
inder

W
orkoutTrainer

Parrot
Spotify

En
er

gy
 (m

Ah
)

UICompanion Watch Energy
Companion Watch Energy

Figure 15: Comparing energy con-
sumption on the watch UICompanion
offloading more computation to the
phone, reducing energy.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

4Sound
Angham

i
BandLab
Counter
Endom

ondo
Ghostracer
Hydrocoach
iHeartRadio
LensGauge
M

DPlayer
M

usicPlayer
m

yTunerFree
PlayM

usic
PodcastRepublic
M

yShoppingList
W

aterDrinkRem
inder

W
orkoutTrainer

Parrot
Spotify

En
er

gy
 (m

J)

UICompanion Phone Energy
Companion Phone Energy

Figure 16: Comparing energy consump-
tion on the phone. UICompanion and
the companion counterpart consume
have comparable energy consumptions.

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 1 2 3 4 5 6

En
er

gy
 (m

J)

Number of Background Apps

(1) UIWear/Screen off
(2) UIWear/App Active
(3) Default/Screen off
(4) Default/App Active

Figure 17: Comparing energy under UI-
Wear and under default behavior where
the view node is destroyed.

CPU, Energy, and Network Resources

CPU usage: Figure 13 shows that watch CPU consumption for both
the UICompanion and the companion apps. For 3 apps, UICompan-
ion app reduces CPU consumption by over 3 times by offloading
most of the computation to the phone.

On the phone, the CPU consumption of UICompanion and com-
panion apps is comparable across all 20 apps (2% lower for UICom-
panion on average). We omit a detailed listing in the interest of
brevity.
Energy consumption: UICompanion apps consume significantly less
energy on the watch than companion apps, depicted in Figure 15.
In the case ofmyTunerFree app, UICompanion reduces energy by 20
times. UIWear essentially shifts processing to the phone, reducing
energy usage on the watch.

Even though work is offloaded to the phone, UICompanion apps
generally do not increase phone energy consumption, shown in
Figure 16. In the worst cases, 4 apps increase phone energy con-
sumption by 3%. We believe this is because the phone is more
powerful and the incremental costs of performing the additional
work on the phone is lower.
Network usage: Figure 14 shows the amount of data transferred
from the phone to the watch. For 9 of the 20 apps, the amount of
data transferred by UICompanion and companion apps are similar.
In other words, the developers of these 9 apps are also writing com-
panion apps as GUI subsets of the original app, and synchronizing
image and other data between the wearable and phone app at run

time. UIWear simply streamlines this process to reduce developer
effort. For 5 of the 20 apps, the companion app transfers a large
amount of data to the watch; without source code, we are unable
to determine the reason for this data transfer. The companion apps
that performmore local computation (e.g.,Ghosttracer, and Counter)
require less data to be transferred.

8.4 Effect of Multiple Background Applications
One potential concern about UIWear is the incremental cost of hav-
ing multiple active apps in the background on the phone, respond-
ing to I/O from the watch. Figure 17 shows the energy consumption
as the number of background applications increases from one to
five. We measure this under four conditions: (1) the view nodes are
active, but the screen is off, (2) the view nodes are active, and an
application is running in the foreground, (3) the view nodes are in-
active and the screen is off, and (4) the view nodes are inactive with
a foreground app. Cases (1) and (3) represent the UIWear design,
and (2) and (4) are Android defaults.

Figure 17 shows that the energy cost of keeping view nodes active
with the screen off (1) is comparable to making them inactive (3),
and that having additional active view nodes running (2) along side
a foreground application is comparable to having no background
view nodes (4). In the interest of brevity, we omit performance
figures; in summary, there is no difference in performance of the
foreground application as the number of background apps increases.
There was also no difference in performance on the watch whether
the phone app is in the background or foreground.

Metric UICompanion AndroidWear
better or equal better

Functionality 78% 22%
Look and feel 74% 26%

Table 3: Qualitative comparison of UIWear’s UICompan-
ion app and the AndroidWear playstore companion app in
terms of functionality and look-and-feel. The results show
the percentages across 20 subjects and 5 applications.

8.5 Sony SmartEyeglass
We demonstrate the ability for UIWear to support multiple form
factors by also creating UICompanion apps for the smartglass form
factor for two applications: Spotify and MyShoppingList. For both
applications, the UICompanion app required less than 30 lines of
meta program.

On the Spotify UICompanion app on the glass, users can pause or
play the song. On the MyShoppingList app, users can delete items.
The response time is 74ms for the Spotify application and 24ms for
the MyShoppingList application, averaged over 10 runs. Since the
Sony SmartEyeglass ecosystem does not have existing companion
applications, we have no good baseline for comparison. This case
study does demonstrate that UIWear can accelerate development
of companion apps for a new platform.

8.6 User Study
We conducted an IRB-approved user study to (i) qualitatively com-
pare the AndroidWear playstore companion app and the UIWear
generated UICompanion app, and (ii) measure the time taken for a
designer to write a meta program specification for a given applica-
tion.

We recruited twenty subjects from the University: four under-
graduate and sixteen graduate students. 30% of the students were
female and 70% were male, 30% of the students were from outside
the computer science department and the remaining were computer
science students.
Qualitative comparisons: We use two qualitative measures for com-
parison: look-and-feel and functionality. The experiments are con-
ducted on the following apps: Counter, LensGauge, MusicPlayer,
MyShoppingList and Spotify. For each application, we let the sub-
jects interact with the two versions of the app for one minute each.
We use A/B testing and record the subjects responses in terms of
whether they preferred A, B, or if the two versions were equal. The
results of the comparison are shown in Table 3. Subjects found
UICompanion version to be equivalent or better than the compan-
ion version 78% of the time in terms of functionality and 74% of the
time in terms of look-and-feel.

We studied the cases when UICompanion apps performed worse
than the AndroidWear companion apps in terms of look-and-feel
and functionality. We find that this was likely because the UICom-
panion app did not port the progress-bar widget and did not support
animations. The subjects found the animation and the widgets more
appealing. We believe these issues can be addressed in a more fully-
featured version of UIWear.
Estimating designer effort: We asked ten subjects to write a meta
program to mimic two companion applications: Spotify and Music

Player. Before the start of the study, we gave all subjects a ten
minute introduction to the procedure. We provide the template for
both applications and the preference file as described in §5.

The subjects had to first identify which UI element each ID in
the preference file corresponded to and create the layout XML to
specify the location and size of each UI element. The subjects were
able to view the visual layout. Each subject created a working meta
program in under 16 minutes per application. Of the ten, five were
from the Computer Science department and five were from other de-
partments. Six subjects considered themselves strong programmers
and the other four rated themselves as novice programmers.

These results indicate that, from the end-user’s perspective, UI-
Wear can generate apps that are competitive with hand-written
companion apps. Moreover, the meta programming process is ac-
cessible even to novice programmers.

9 RELATEDWORK
Broadly speaking, related systems research on extending UIs to
remote devices do not re-tailor the UI for the remote screen [24, 26,
34, 44, 59–61, 68]. As a result, theseworks are largely applicable only
to homogenous settings where no UI retailoring is needed. Existing
HCI work on designing cross-device UI focus on (1) designing UIs
that are consistent across devices and (2) authoring tools for cross-
device UI design. However, these HCI techniques cannot be applied
to off-the-shelf applications and they do not solve the systems
challenges of extracting and synchronizing UI elements. UIWear
fills this void by addressing both the HCI and the systems challenges
in extending UI across devices.

9.1 Systems Approaches

Supporting Remote Access

A number of protocols and systems have been designed for re-
mote access to a server or desktop, including RDP [59], VNC [60],
ICA [39], PCoIP [66] and many others [25, 27, 44, 62]. In general,
these protocols simply relay the hardware framebuffer contents,
as well as mouse and keyboard events, between systems. Research
proposals have also extended remote access protocols with some
semantic information, to cope with high resolution graphics [34],
lower-bandwidth remote access connections [27], or to modify ges-
tures [56]. These approaches do not support GUI re-tailoring to suit
small form factor devices.

The main remote access protocol that uses semantic objects
is X [61]; to our knowledge, X has not been previously used for
adapting GUIs to heterogeneous and small form factors. In fact,
there are no implementations of an X client on phones, although
some smartphones do support an X server. The UIWear design is
inspired by the X protocol, but is designed specifically for small
form factor devices.
Porting Applictations

A number of solutions port applications from one platform to an-
other, that includes porting the UI. A subset of related work in this
category [28, 33, 41, 42, 57] port screen access through a virtual
frame buffer, which, as stated above, does not solve the problems
addressed by UIWear.

Flux [68] ports UI across devices without transferring the screen
buffer, and instead migrates the application from one device to
another. Flux does account for device heterogeneity and can run a
smartphone application on a more powerful tablet and vice versa.
Flux assumes that architectures of the devices have some differences,
but largely provide similar functionality. However, wearable devices
only support a small subset of functionalities of a smartphone,
making app migration from a smartphone to a wearable device
infeasible.

Cider [24] and Apportable [26] port phone applications that are
designed for one OS to another. For instance, Cider [24] designs core
libraries and compile-time code adaptation to support applications
designed for iOS to run on Android. However, similar to the app
migration above [68], these systems cannot be extended to highly
heterogenous devices.

Most similar to UIWear is Sinter [30], which also mines a UI
tree using accessibility interfaces. The goal of Sinter is to make
accessibility tools, such as screen readers, work across different
OSes and on remote or virtual desktops. Sinter is not sufficient to
create a companion app, as it cannot extract or manipulate image
or other visual data, does not address heterogeneity in form factors,
and does not work when the smartphone application is no longer
in the foreground.

9.2 HCI Approaches

Cross-Device UI Authoring tools

UIWear is inspired by the pioneering work in the model-based user
interface design paradigm that allows developers to specify the UI
using higher-level abstractions, rather than programming a specific
UI layout [32, 32, 58, 64].

While the model-based design makes authoring UIs simpler, an
abstraction layer has to specified for each concrete device, OS, and
UI look-and-feel. As a result, recently, most works use a hybrid
method that simplifies some elements of cross-device UI design,
but ultimately maintains a WYSIWYG approach for each device
type, requiring some manual effort per device type. Gummy [48],
PageTailor [29], WinCuts [65] and Jelly [47] start off from a given
UI and allow developers to choose pieces of this UI to be reused
on a different device. Highlight [53] uses a middleware proxy to
compile HTML from PCs to mobile phones rather than requiring a
UI abstraction.

However, these projects do not solve the problems addressed
in UIWear. While Gummy [48] and Jelly [47] provide developers a
platform to design UIs for each device type, they do not automati-
cally create the companion application. Specifically, these works
do not address the systems challenges of extracting, transferring,
and updating the UI.

On the other hand, WinCuts [65], PageTailor [29] and High-
light [53] work only for Web pages. In general, cross-device Web
page authoring is a better-studied problem, in part because Web
page compilers and Web browsers are more standardized across
devices than the runtime environment for mobile applications. For
example, recent work on Responsive UI platforms [6] allow devel-
opers to write a single Web page that can be modified for different
screens. However, the ideas used for cross-device Web page designs
do not translate to other mobile applications.

Co-designing cross-device UI

UI co-design research focuses on building platforms and tools for
developers to simultaneously design UIs for different devices for
consistent look-and-feel. Nguyen et al. [52] provides a platform to
create a fully-abstracted UI that compiles to concrete UIs on differ-
ent devices.Weave [31] uses a Javascript-based scripting framework
for a developer to concurrently visualize UI on multiple devices.
WatchConnect [40] is a toolkit and an emulation platform for users
to easily design smartwatch UI. Ghiani et al. [36] lets a developer
annotate an abstract UI and select which segments of the UI will
be rendered on different devices

All of these works make it easy to design cross-device UIs, but
they only work for custom applications that are designed using the
tool. They do not work for off-the-shelf applications and do not
handle any of the systems challenges of sharing the UI.
Distributing the UI across devices

Since wearable computers became mainstream, UI researchers are
creating interactions that involve multiple devices working at the
same time. In effect, a single application UI is split into different
parts and shown on different device screens for the best viewing
experience for the user.

The XDBrowser system [50, 51] allows web page authors to
distribute the UI across the smartphone, smartwatch, and the PC.
Recently, the XDBrowser systemwas extended for email clients [49].
Similarly, the Panelrama system [70] uses a novel annotation and
distribution technique. The developer annotates the Web page and
Panelrama automatically renders different parts of the Web page
on different devices based on the annotation.

However, existing systems focus on a single application, most
commonly Web pages. They do not work for diverse, off-the-shelf,
applications. The Conductor [37] system designs new interaction
methods for users to migrate between a smartphone and a wearable
screen. This work makes it easier to move between UIs, but does
not provide techniques to share the UI itself.

10 CONCLUSION
In the near future, we expect to see an increasing abundance of
smaller, network-connected devices with diverse form factors and
limited computing power. UIWear can dramatically simplify the
development effort to export user interfaces to this broad array of
devices. The developer writes an application for the smartphone,
and UIWear extends the application to any wearable device with
minimal effort from the developer, without sacrificing performance
or power. UIWear contributes a new design point that decouples
the concerns of application logic and UI design.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd, Sharad
Agarwal, for their insightful comments. We thank Syed Masum
Billah for his help with understanding and using intermediate UI
representations. We thank Roy Shilkrot for his help in reviewing
literature on cross-device user interfaces. We thank our user study
participants. This work was supported in part by NSF grant CNS-
1405641, CNS-1551909, and VMware.

REFERENCES
[1] Android Internals: A Confectioners Cookbook. http://newandroidbook.com/

index.php.
[2] Android View Hierarchy. http://developer.android.com/guide/topics/ui/overview.

html.
[3] Androidwear 2.0. http://www.wareable.com/android-wear/.
[4] Apple View Hierarchy. https://developer.apple.com/library/ios/documentation/

General/Conceptual/Devpedia-CocoaApp/View%20Hierarchy.html.
[5] Apple watchos. http://www.apple.com/watchos/.
[6] Bootstrap. http://getbootstrap.com/.
[7] Card layout. https://developer.android.com/training/wearables/ui/cards.html.
[8] Dex to Java decompiler. https://github.com/skylot/jadx.
[9] Dumpsys battery status. https://source.android.com/devices/tech/power/

batterystats.html.
[10] Freemarker. http://freemarker.org/.
[11] GPS Heads Up Display. http://www.reconinstruments.com/products/snow2/.
[12] Hierarchy Viewer. http://developer.android.com/tools/help/hierarchy-viewer.

html.
[13] Monsoon Power Monitor. https://www.msoon.com/LabEquipment/

PowerMonitor/.
[14] ntpd. http://doc.ntp.org/4.1.0/ntpd.htm.
[15] Pebble. https://www.pebble.com/.
[16] Responsive ui design. https://medium.com/google-developers/

building-a-responsive-ui-in-android-7dc7e4efcbb3#.bi9jk1rdy.
[17] Sony SmartEyeglass SDK. https://developer.sony.com/develop/wearables/

smarteyeglass-sdk/.
[18] Tizen. https://www.tizen.org/.
[19] Ui patterns for wearables. https://developer.android.com/design/wear/patterns.

html.
[20] Wear Spotify for Android Wear. https://play.google.com/store/apps/details?id=

wearablesoftware.wearspotifyplayer&hl=en.
[21] Android Accessibility Service. http://developer.android.com/reference/android/

accessibilityservice/AccessibilityService.html.
[22] Ai Squared. Zoomtext magnifier. http://www.aisquared.com/zoomtext/more/

zoomtext_magnifier.
[23] Google Android Wear Market. https://play.google.com/store/apps/category/

ANDROID_WEAR?hl=en.
[24] J. Andrus, A. Van’t Hof, N. AlDuaij, C. Dall, N. Viennot, and J. Nieh. Cider:

Native execution of ios apps on android. In Proceedings of the ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 367–382, 2014.

[25] Apple. Airplay—play content from ios devices on appletv. https://www.apple.
com/airplay/.

[26] Apportable. http://www.apportable.com/.
[27] R. A. Baratto, L. N. Kim, and J. Nieh. Thinc: A virtual display architecture for thin-

client computing. In Proceedings of the ACM SIGOPS Symposium on Operating
Systems Principles (SOSP), pages 277–290, 2005.

[28] A. Baumann, D. Lee, P. Fonseca, L. Glendenning, J. R. Lorch, B. Bond, R. Olinsky,
and G. C. Hunt. Composing OS extensions safely and efficiently with Bascule.
In Proceedings of the ACM European Conference on Computer Systems (EuroSys),
2013.

[29] N. Bila, T. Ronda, I. Mohomed, K. N. Truong, and E. de Lara. Pagetailor: reusable
end-user customization for the mobile web. In Proceedings of the 5th international
conference on Mobile systems, applications and services, pages 16–29. ACM, 2007.

[30] S. M. Billah, D. E. Porter, and I. V. Ramakrishnan. Sinter: Low-bandwidth remote
access for the visually-impaired. In Proceedings of the ACM European Conference
on Computer Systems (EuroSys), 2016.

[31] P.-Y. P. Chi and Y. Li. Weave: Scripting cross-device wearable interaction. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, pages 3923–3932. ACM, 2015.

[32] K. Coninx, K. Luyten, C. Vandervelpen, J. Van den Bergh, and B. Creemers.
Dygimes: Dynamically generating interfaces for mobile computing devices and
embedded systems. In International Conference on Mobile Human-Computer
Interaction, pages 256–270. Springer, 2003.

[33] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. Leveraging legacy code to
deploy desktop applications on the web. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2008.

[34] C. D. Estes and K. Mayer-Patel. Moving beyond the framebuffer. In Proceedings
of the 21st International Workshop on Network and Operating Systems Support for
Digital Audio and Video, NOSSDAV ’11, pages 93–98, New York, NY, USA, 2011.
ACM.

[35] Freedom Scientific. Magic screen magnification software. http://www.
freedomscientific.com/products/lv/magic-bl-product-page.asp.

[36] G. Ghiani, M. Manca, and F. Paternò. Authoring context-dependent cross-device
user interfaces based on trigger/action rules. In Proceedings of the 14th Interna-
tional Conference on Mobile and Ubiquitous Multimedia, pages 313–322. ACM,

2015.
[37] P. Hamilton and D. J. Wigdor. Conductor: Enabling and understanding cross-

device interaction. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’14, pages 2773–2782, New York, NY, USA, 2014. ACM.

[38] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan. Puma: Programmable
ui-automation for large-scale dynamic analysis of mobile apps. In Proceedings
of the 12th Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’14, pages 204–217, New York, NY, USA, 2014. ACM.

[39] J. Harder and J. Maynard. Technical deep dive: Ica protocol and acceleration.
http://s3.amazonaws.com/legacy.icmp/additional/ica_acceleration_0709a.pdf.

[40] S. Houben and N. Marquardt. Watchconnect: A toolkit for prototyping
smartwatch-centric cross-device applications. In Proceedings of the 33rd An-
nual ACM Conference on Human Factors in Computing Systems, pages 1247–1256.
ACM, 2015.

[41] J. Howell, B. Parno, and J. R. Douceur. Embassies: Radically refactoring the
web. In Proceedings of the USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 529–546, 2013.

[42] J. Howell, B. Parno, and J. R. Douceur. How to run POSIX apps in a minimal
picoprocess. In Proceedings of the USENIX Annual Technical Conference, pages
321–332, 2013.

[43] Intel. Intel atom e3800 processor series: Android multi-display features in auto-
mobiles. http://www.intel.in/content/www/in/en/embedded/products/bay-trail/
atom-e3800-android-display-vehicles-paper.html, 2014.

[44] J. Kim, R. A. Baratto, and J. Nieh. pTHINC: A Thin-client Architecture for Mobile
Wireless Web. In Proceedings of the 15th International Conference on World Wide
Web (WWW), pages 143–152, 2006.

[45] G. Kulkarni, V. Premraj, V. Ordonez, S. Dhar, S. Li, Y. Choi, A. C. Berg, and T. L.
Berg. Babytalk: Understanding and generating simple image descriptions. IEEE
Trans. Pattern Anal. Mach. Intell., 35(12):2891–2903, Dec. 2013.

[46] R. Liu and F. X. Lin. Understanding the characteristics of android wear os.
In Proceedings of the 14th Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys ’16, pages 151–164, New York, NY, USA, 2016.
ACM.

[47] J. Meskens, K. Luyten, and K. Coninx. Jelly: A multi-device design environment
for managing consistency across devices. In Proceedings of the International
Conference on Advanced Visual Interfaces, pages 289–296. ACM, 2010.

[48] J. Meskens, J. Vermeulen, K. Luyten, and K. Coninx. Gummy for multi-platform
user interface designs: shape me, multiply me, fix me, use me. In Proceedings of
the working conference on Advanced visual interfaces, pages 233–240. ACM, 2008.

[49] M. Nebeling. Xdbrowser 2.0: Semi-automatic generation of cross-device interfaces.
In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems,
CHI ’17, pages 4574–4584, New York, NY, USA, 2017. ACM.

[50] M. Nebeling and A. K. Dey. Xdbrowser: User-defined cross-device web page
designs. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems, pages 5494–5505. ACM, 2016.

[51] M. Nebeling, T. Mintsi, M. Husmann, and M. Norrie. Interactive development of
cross-device user interfaces. In Proceedings of the 32nd annual ACM conference
on Human factors in computing systems, pages 2793–2802. ACM, 2014.

[52] T.-D. Nguyen, J. Vanderdonckt, and A. Seffah. Generative patterns for designing
multiple user interfaces. In 3rd IEEE/ACM International Conference on Mobile
Software Engineering and Systems MobileSoft’2016, 2016.

[53] J. Nichols, Z. Hua, and J. Barton. Highlight: a system for creating and deploying
mobile web applications. In Proceedings of the 21st annual ACM symposium on
User interface software and technology, pages 249–258. ACM, 2008.

[54] V. Ordonez, W. Liu, J. Deng, Y. Choi, A. C. Berg, and T. L. Berg. Learning to name
objects. Commun. ACM, 59(3):108–115, Feb. 2016.

[55] E. F. Oriana Riva, Suman Nath. Appstract: On-the-fly app content semantics with
better privacy. In ACM Mobicom. ACM, July 2016.

[56] Parallels. Parallels access. http://www.parallels.com/products/access/.
[57] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. Hunt. Rethinking

the library OS from the top down. In Proceedings of the ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 291–304, 2011.

[58] A. R. Puerta. A model-based interface development environment. IEEE Software,
14(4):40–47, 1997.

[59] Remote Desktop Protocol. https://en.wikipedia.org/wiki/Remote_Desktop_
Protocol.

[60] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper. Virtual network
computing. Internet Computing, IEEE, 2(1):33–38, Jan 1998.

[61] R. W. Scheifler and J. Gettys. The x window system. ACM Trans. Graph., 5(2):79–
109, Apr. 1986.

[62] B. K. Schmidt, M. S. Lam, and J. D. Northcutt. The interactive performance of
slim: A stateless, thin-client architecture. In Proceedings of the ACM SIGOPS
Symposium on Operating Systems Principles (SOSP), pages 32–47, 1999.

[63] A. Schulman, T. Thapliyal, S. Katti, N. Spring, D. Levin, and P. Dutta. Battor:
Plug-and-debug energy debugging for applications on smartphones and laptops.
Technical report, Stanford University, 2015.

http://newandroidbook.com/index.php
http://newandroidbook.com/index.php
http://developer.android.com/guide/topics/ui/overview.html
http://developer.android.com/guide/topics/ui/overview.html
http://www.wareable.com/android-wear/
https://developer.apple.com/library/ios/documentation/General/Conceptual/Devpedia-CocoaApp/View%20Hierarchy.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/Devpedia-CocoaApp/View%20Hierarchy.html
http://www.apple.com/watchos/
http://getbootstrap.com/
https://developer.android.com/training/wearables/ui/cards.html
https://github.com/skylot/jadx
https://source.android.com/devices/tech/power/batterystats.html
https://source.android.com/devices/tech/power/batterystats.html
http://freemarker.org/
http://www.reconinstruments.com/products/snow2/
http://developer.android.com/tools/help/hierarchy-viewer.html
http://developer.android.com/tools/help/hierarchy-viewer.html
https://www.msoon.com/LabEquipment/PowerMonitor/
https://www.msoon.com/LabEquipment/PowerMonitor/
http://doc.ntp.org/4.1.0/ntpd.htm
https://www.pebble.com/
https://medium.com/google-developers/building-a-responsive-ui-in-android-7dc7e4efcbb3#.bi9jk1rdy
https://medium.com/google-developers/building-a-responsive-ui-in-android-7dc7e4efcbb3#.bi9jk1rdy
https://developer.sony.com/develop/wearables/smarteyeglass-sdk/
https://developer.sony.com/develop/wearables/smarteyeglass-sdk/
https://www.tizen.org/
https://developer.android.com/design/wear/patterns.html
https://developer.android.com/design/wear/patterns.html
https://play.google.com/store/apps/details?id=wearablesoftware.wearspotifyplayer&hl=en
https://play.google.com/store/apps/details?id=wearablesoftware.wearspotifyplayer&hl=en
http://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
http://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
http://www.aisquared.com/zoomtext/more/zoomtext_magnifier
http://www.aisquared.com/zoomtext/more/zoomtext_magnifier
https://play.google.com/store/apps/category/ANDROID_WEAR?hl=en
https://play.google.com/store/apps/category/ANDROID_WEAR?hl=en
https://www.apple.com/airplay/
https://www.apple.com/airplay/
http://www.apportable.com/
http://www.freedomscientific.com/products/lv/magic-bl-product-page.asp
http://www.freedomscientific.com/products/lv/magic-bl-product-page.asp
http://s3.amazonaws.com/legacy.icmp/additional/ica_acceleration_0709a.pdf
http://www.intel.in/content/www/in/en/embedded/products/bay-trail/atom-e3800-android-display-vehicles-paper.html
http://www.intel.in/content/www/in/en/embedded/products/bay-trail/atom-e3800-android-display-vehicles-paper.html
http://www.parallels.com/products/access/
https://en.wikipedia.org/wiki/Remote_Desktop_Protocol
https://en.wikipedia.org/wiki/Remote_Desktop_Protocol

[64] P. Szekely, P. Sukaviriya, P. Castells, J. Muthukumarasamy, and E. Salcher. Declar-
ative interface models for user interface construction tools: the mastermind ap-
proach. In Engineering for Human-Computer Interaction, pages 120–150. Springer,
1996.

[65] D. S. Tan, B. Meyers, andM. Czerwinski. Wincuts: Manipulating arbitrarywindow
regions for more effective use of screen space. In CHI ’04 Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’04, pages 1525–1528, New York,
NY, USA, 2004. ACM.

[66] Teradici. Pc-over-ip technology explained. http://www.teradici.com/
pcoip-technology.

[67] UIAutomater Viewer. http://www.bdtool.net/third/android-doc/web-docs/tools/
testing/testing_ui.html.

[68] A. Van’t Hof, H. Jamjoom, J. Nieh, and D.Williams. Flux: Multi-surface computing
in android. In Proceedings of the Tenth European Conference on Computer Systems,
EuroSys ’15, pages 24:1–24:17, New York, NY, USA, 2015. ACM.

[69] Systrace. https://developer.android.com/studio/profile/systrace-commandline.
html.

[70] J. Yang and D. Wigdor. Panelrama: Enabling easy specification of cross-device
web applications. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’14, pages 2783–2792, New York, NY, USA, 2014. ACM.

http://www.teradici.com/pcoip-technology
http://www.teradici.com/pcoip-technology
http://www.bdtool.net/third/android-doc/web-docs/tools/testing/testing_ui.html
http://www.bdtool.net/third/android-doc/web-docs/tools/testing/testing_ui.html
https://developer.android.com/studio/profile/systrace-commandline.html
https://developer.android.com/studio/profile/systrace-commandline.html

	Abstract
	1 Introduction
	2 Companion Applications
	2.1 AndroidWear Apps

	3 UIWear Architecture
	4 UI tree extraction
	5 Meta program and Compiler
	5.1 Preference Specification
	5.2 Wearable Layout Specification
	5.3 UIWear Compiler

	6 UIWear runtime
	7 Implementation
	7.1 Compiler Implementation
	7.2 UIWear Synchronization Implementation
	7.3 I/O Multiplexing Implementation
	7.4 Other Use Cases
	7.5 Limitations and Future work

	8 Evaluation
	8.1 Applications
	8.2 Experimental Setup and Methodology
	8.3 Quantitative Comparisons
	8.4 Effect of Multiple Background Applications
	8.5 Sony SmartEyeglass
	8.6 User Study

	9 Related Work
	9.1 Systems Approaches
	9.2 HCI Approaches

	10 Conclusion
	References

